16 research outputs found
Compositional modelling of immune response and virus transmission dynamics
Transmission models for infectious diseases are typically formulated in terms of dynamics between individuals or groups with processes such as disease progression or recovery for each individual captured phenomenologically, without reference to underlying biological processes. Furthermore, the construction of these models is often monolithic: they do not allow one to readily modify the processes involved or include the new ones, or to combine models at different scales. We show how to construct a simple model of immune response to a respiratory virus and a model of transmission using an easily modifiable set of rules allowing further refining and merging the two models together. The immune response model reproduces the expected response curve of PCR testing for COVID-19 and implies a long-tailed distribution of infectiousness reflective of individual heterogeneity. This immune response model, when combined with a transmission model, reproduces the previously reported shift in the population distribution of viral loads along an epidemic trajectory. This article is part of the theme issue ‘Technical challenges of modelling real-life epidemics and examples of overcoming these’
Recommended from our members
Pre-existing humoral immunity to human common cold coronaviruses negatively impacts the protective SARS-CoV-2 antibody response
SARS-CoV-2 infection causes diverse outcomes ranging from asymptomatic infection to respiratory distress and death. A major unresolved question is whether prior immunity to endemic, human common cold coronaviruses (hCCCoVs) impacts susceptibility to SARS-CoV-2 infection or immunity following infection and vaccination. Therefore, we analyzed samples from the same individuals before and after SARS-CoV-2 infection or vaccination. We found hCCCoV antibody levels increase after SARS-CoV-2 exposure, demonstrating cross-reactivity. However, a case-control study indicates that baseline hCCCoV antibody levels are not associated with protection against SARS-CoV-2 infection. Rather, higher magnitudes of pre-existing betacoronavirus antibodies correlate with more SARS-CoV-2 antibodies following infection, an indicator of greater disease severity. Additionally, immunization with hCCCoV spike proteins before SARS-CoV-2 immunization impedes the generation of SARS-CoV-2-neutralizing antibodies in mice. Together, these data suggest that pre-existing hCCCoV antibodies hinder SARS-CoV-2 antibody-based immunity following infection and provide insight on how pre-existing coronavirus immunity impacts SARS-CoV-2 infection, which is critical considering emerging variants
Identifying IGH disease clones for MRD monitoring in childhood B-cell acute lymphoblastic leukemia using RNA-Seq
10.1038/s41375-020-0774-4Leukemi
Robust estimates of overall immune-repertoire diversity from high-throughput measurements on samples
More or less—On the influence of labelling strategies to infer cell population dynamics
<div><p>The adoptive transfer of labelled cell populations has been an essential tool to determine and quantify cellular dynamics. The experimental methods to label and track cells over time range from fluorescent dyes over congenic markers towards single-cell labelling techniques, such as genetic barcodes. While these methods have been widely used to quantify cell differentiation and division dynamics, the extent to which the applied labelling strategy actually affects the quantification of the dynamics has not been determined so far. This is especially important in situations where measurements can only be obtained at a single time point, as e.g. due to organ harvest. To this end, we studied the appropriateness of various labelling strategies as characterised by the number of different labels and the initial number of cells per label to quantify cellular dynamics. We simulated adoptive transfer experiments in systems of various complexity that assumed either homoeostatic cellular turnover or cell expansion dynamics involving various steps of cell differentiation and proliferation. Re-sampling cells at a single time point, we determined the ability of different labelling strategies to recover the underlying kinetics. Our results indicate that cell transition and expansion rates are differently affected by experimental shortcomings, such as loss of cells during transfer or sampling, dependent on the labelling strategy used. Furthermore, uniformly distributed labels in the transferred population generally lead to more robust and less biased results than non-equal label sizes. In addition, our analysis indicates that certain labelling approaches incorporate a systematic bias for the identification of complex cell expansion dynamics.</p></div