110 research outputs found

    Microarray comparison of prostate tumor gene expression in African-American and Caucasian American males: a pilot project study

    Get PDF
    African American Men are 65% more likely to develop prostate cancer and are twice as likely to die of prostate cancer, than are Caucasian American Males. The explanation for this glaring health disparity is still unknown; although a number of different plausible factors have been offered including genetic susceptibility and gene-environment interactions. We favor the hypothesis that altered gene expression plays a major role in the disparity observed in prostate cancer incidence and mortality between African American and Caucasian American Males. To discover genes or gene expression pattern(s) unique to African American or to Caucasian American Males that explain the observed prostate cancer health disparity in African American males, we conducted a micro array pilot project study that used prostate tumors with a Gleason score of 6. We compared gene expression profiling in tumors from African-American Males to prostate tumors in Caucasian American Males. A comparison of case-matched ratios revealed at least 67 statistically significant genes that met filtering criteria of at least +/- 4.0 fold change and p < 0.0001. Gene ontology terms prevalent in African American prostate tumor/normal ratios relative to Caucasian American prostate tumor/normal ratios included interleukins, progesterone signaling, Chromatin-mediated maintenance and myeloid dendritic cell proliferation. Functional in vitro assays are underway to determine roles that selected genes in these onotologies play in contributing to prostate cancer development and health disparity

    Use of DNA–Damaging Agents and RNA Pooling to Assess Expression Profiles Associated with BRCA1 and BRCA2 Mutation Status in Familial Breast Cancer Patients

    Get PDF
    A large number of rare sequence variants of unknown clinical significance have been identified in the breast cancer susceptibility genes, BRCA1 and BRCA2. Laboratory-based methods that can distinguish between carriers of pathogenic mutations and non-carriers are likely to have utility for the classification of these sequence variants. To identify predictors of pathogenic mutation status in familial breast cancer patients, we explored the use of gene expression arrays to assess the effect of two DNA–damaging agents (irradiation and mitomycin C) on cellular response in relation to BRCA1 and BRCA2 mutation status. A range of regimes was used to treat 27 lymphoblastoid cell-lines (LCLs) derived from affected women in high-risk breast cancer families (nine BRCA1, nine BRCA2, and nine non-BRCA1/2 or BRCAX individuals) and nine LCLs from healthy individuals. Using an RNA–pooling strategy, we found that treating LCLs with 1.2 µM mitomycin C and measuring the gene expression profiles 1 hour post-treatment had the greatest potential to discriminate BRCA1, BRCA2, and BRCAX mutation status. A classifier was built using the expression profile of nine QRT–PCR validated genes that were associated with BRCA1, BRCA2, and BRCAX status in RNA pools. These nine genes could distinguish BRCA1 from BRCA2 carriers with 83% accuracy in individual samples, but three-way analysis for BRCA1, BRCA2, and BRCAX had a maximum of 59% prediction accuracy. Our results suggest that, compared to BRCA1 and BRCA2 mutation carriers, non-BRCA1/2 (BRCAX) individuals are genetically heterogeneous. This study also demonstrates the effectiveness of RNA pools to compare the expression profiles of cell-lines from BRCA1, BRCA2, and BRCAX cases after treatment with irradiation and mitomycin C as a method to prioritize treatment regimes for detailed downstream expression analysis

    An In Situ Autologous Tumor Vaccination with Combined Radiation Therapy and TLR9 Agonist Therapy

    Get PDF
    PURPOSE:Recent studies have shown that a new generation of synthetic agonist of Toll-like receptor (TLR) 9 consisting a 3'-3'-attached structure and a dCp7-deaza-dG dinucultodie shows more potent immunostimulatory effects in both mouse and human than conventional CpG oligonucleotides. Radiation therapy (RT) provides a source of tumor antigens that are released from dying, irradiated, tumor cells without causing systemic immunosuppression. We, therefore, examined effect of combining RT with a designer synthetic agonist of TLR9 on anti-tumoral immunity, primary tumor growth retardation and metastases in a murine model of lung cancer. METHODS:Grouped C57BL/6 and congenic B cell deficient mice (B(-/-)) bearing footpad 3LL tumors were treated with PBS, TLR9 agonist, control oligonucelotide, RT or the combination of RT and TLR9 agonist. Immune phenotype of splenocytes and serum IFN-γ and IL-10 levels were analyzed by FACS and ELISA, 24 h after treatment. Tumor growth, lung metastases and survival rate were monitored and tumor specific antibodies in serum and deposition in tumor tissue were measured by ELISA and immunofluorescence. RESULTS:TLR9 agonist expanded and activated B cells and plasmacytoid dendritic cells in wild-type mice and natural killer DCs (NKDCs) in B cell-deficient (B(-/-)) mice bearing ectopic Lewis lung adenocarcinoma (3LL). Combined RT with TLR9 agonist treatment inhibited 3LL tumor growth in both wild type and B(-/-) mice. A strong tumor-specific humoral immune response (titer: 1/3200) with deposition of mouse IgG auto-antibodies in tumor tissue were found in wildtype mice, whereas the number of tumor infiltrating NKDCs increased in B(-/-) mice following RT+ TLR9 agonist therapy. Furthermore, mice receiving combination therapy had fewer lung metastases and a higher survival than single treatment cohorts. CONCLUSIONS:Combination therapy with TLR9 agonist and RT induces systemic anti-tumoral humoral response, augments tumoral infiltration of NKDCs, reduces pulmonary metastases and improves survival in a murine model of 3LL cancer

    Varying Herbivore Population Structure Correlates with Lack of Local Adaptation in a Geographic Variable Plant-Herbivore Interaction

    Get PDF
    Local adaptation of parasites to their hosts due to coevolution is a central prediction of many theories in evolutionary biology. However, empirical studies looking for parasite local adaptation show great variation in outcomes, and the reasons for such variation are largely unknown. In a previous study, we showed adaptive differentiation in the arctiid moth Utetheisa ornatrix to its host plant, the pyrrolizidine alkaloid-bearing legume Crotalaria pallida, at the continental scale, but found no differentiation at the regional scale. In the present study, we sampled the same sites to investigate factors that may contribute to the lack of differentiation at the regional scale. We performed field observations that show that specialist and non-specialist polyphagous herbivore incidence varies among populations at both scales. With a series of common-garden experiments we show that some plant traits that may affect herbivory (pyrrolizidine alkaloids and extrafloral nectaries) vary at the regional scale, while other traits (trichomes and nitrogen content) just vary at the continental scale. These results, combined with our previous evidence for plant population differentiation based on larval performance on fresh fruits, suggest that U. ornatrix is subjected to divergent selection even at the regional scale. Finally, with a microsatellite study we investigated population structure of U. ornatrix. We found that population structure is not stable over time: we found population differentiation at the regional scale in the first year of sampling, but not in the second year. Unstable population structure of the herbivore is the most likely cause of the lack of regional adaptation

    The Tri-Trophic Interactions Hypothesis: Interactive Effects of Host Plant Quality, Diet Breadth and Natural Enemies on Herbivores

    Get PDF
    Several influential hypotheses in plant-herbivore and herbivore-predator interactions consider the interactive effects of plant quality, herbivore diet breadth, and predation on herbivore performance. Yet individually and collectively, these hypotheses fail to address the simultaneous influence of all three factors. Here we review existing hypotheses, and propose the tri-trophic interactions (TTI) hypothesis to consolidate and integrate their predictions. The TTI hypothesis predicts that dietary specialist herbivores (as compared to generalists) should escape predators and be competitively dominant due to faster growth rates, and that such differences should be greater on low quality (as compared to high quality) host plants. To provide a preliminary test of these predictions, we conducted an empirical study comparing the effects of plant (Baccharis salicifolia) quality and predators between a specialist (Uroleucon macolai) and a generalist (Aphis gossypii) aphid herbivore. Consistent with predictions, these three factors interactively determine herbivore performance in ways not addressed by existing hypotheses. Compared to the specialist, the generalist was less fecund, competitively inferior, and more sensitive to low plant quality. Correspondingly, predator effects were contingent upon plant quality only for the generalist. Contrary to predictions, predator effects were weaker for the generalist and on low-quality plants, likely due to density-dependent benefits provided to the generalist by mutualist ants. Because the TTI hypothesis predicts the superior performance of specialists, mutualist ants may be critical to A. gossypii persistence under competition from U. macolai. In summary, the integrative nature of the TTI hypothesis offers novel insight into the determinants of plant-herbivore and herbivore-predator interactions and the coexistence of specialist and generalist herbivores

    Functionally Distinct Subpopulations of CpG-Activated Memory B Cells

    Get PDF
    During the human B cell (Bc) recall response, rapid cell division results in multiple Bc subpopulations. The TLR-9 agonist CpG oligodeoxynucleotide, combined with cytokines, causes Bc activation and division in vitro and increased CD27 surface expression in a sub-population of Bc. We hypothesized that the proliferating CD27lo subpopulation, which has a lower frequency of antibody-secreting cells (ASC) than CD27hi plasmablasts, provides alternative functions such as cytokine secretion, costimulation, or antigen presentation. We performed genome-wide transcriptional analysis of CpG activated Bc sorted into undivided, proliferating CD27lo and proliferating CD27hi subpopulations. Our data supported an alternative hypothesis, that CD27lo cells are a transient pre-plasmablast population, expressing genes associated with Bc receptor editing. Undivided cells had an active transcriptional program of non-ASC B cell functions, including cytokine secretion and costimulation, suggesting a link between innate and adaptive Bc responses. Transcriptome analysis suggested a gene regulatory network for CD27lo and CD27hi Bc differentiation

    Reproductive Flexibility: Genetic Variation, Genetic Costs and Long-Term Evolution in a Collembola

    Get PDF
    In a variable yet predictable world, organisms may use environmental cues to make adaptive adjustments to their phenotype. Such phenotypic flexibility is expected commonly to evolve in life history traits, which are closely tied to Darwinian fitness. Yet adaptive life history flexibility remains poorly documented. Here we introduce the collembolan Folsomia candida, a soil-dweller, parthenogenetic (all-female) microarthropod, as a model organism to study the phenotypic expression, genetic variation, fitness consequences and long-term evolution of life history flexibility. We demonstrate that collembola have a remarkable adaptive ability for adjusting their reproductive phenotype: when transferred from harsh to good conditions (in terms of food ration and crowding), a mother can fine-tune the number and the size of her eggs from one clutch to the next. The comparative analysis of eleven clonal populations of worldwide origins reveals (i) genetic variation in mean egg size under both good and bad conditions; (ii) no genetic variation in egg size flexibility, consistent with convergent evolution to a common physiological limit; (iii) genetic variation of both mean reproductive investment and reproductive investment flexibility, associated with a reversal of the genetic correlation between egg size and clutch size between environmental conditions ; (iv) a negative genetic correlation between reproductive investment flexibility and adult lifespan. Phylogenetic reconstruction shows that two life history strategies, called HIFLEX and LOFLEX, evolved early in evolutionary history. HIFLEX includes six of our 11 clones, and is characterized by large mean egg size and reproductive investment, high reproductive investment flexibility, and low adult survival. LOFLEX (the other five clones) has small mean egg size and low reproductive investment, low reproductive investment flexibility, and high adult survival. The divergence of HIFLEX and LOFLEX could represent different adaptations to environments differing in mean quality and variability, or indicate that a genetic polymorphism of reproductive investment reaction norms has evolved under a physiological tradeoff between reproductive investment flexibility and adult lifespan
    • …
    corecore