51 research outputs found

    Automated underwriting in life insurance: Predictions and optimisation

    Full text link
    © Springer International Publishing AG, part of Springer Nature 2018. Underwriting is an important stage in the life insurance process and is concerned with accepting individuals into an insurance fund and on what terms. It is a tedious and labour-intensive process for both the applicant and the underwriting team. An applicant must fill out a large survey containing thousands of questions about their life. The underwriting team must then process this application and assess the risks posed by the applicant and offer them insurance products as a result. Our work implements and evaluates classical data mining techniques to help automate some aspects of the process to ease the burden on the underwriting team as well as optimise the survey to improve the applicant experience. Logistic Regression, XGBoost and Recursive Feature Elimination are proposed as techniques for the prediction of underwriting outcomes. We conduct experiments on a dataset provided by a leading Australian life insurer and show that our early-stage results are promising and serve as a foundation for further work in this space

    Comparison of Fuzzy Integral-Fuzzy Measure based Ensemble Algorithms with the State-of-the-art Ensemble Algorithms

    Get PDF
    The Fuzzy Integral (FI) is a non-linear aggregation operator which enables the fusion of information from multiple sources in respect to a Fuzzy Measure (FM) which captures the worth of both the individual sources and all their possible combinations. Based on the expected potential of non-linear aggregation offered by the FI, its application to decision-level fusion in ensemble classifiers, i.e. to fuse multiple classifiers outputs towards one superior decision level output, has recently been explored. A key example of such a FI-FM ensemble classification method is the Decision-level Fuzzy Integral Multiple Kernel Learning (DeFIMKL) algorithm, which aggregates the outputs of kernel based classifiers through the use of the Choquet FI with respect to a FM learned through a regularised quadratic programming approach. While the approach has been validated against a number of classifiers based on multiple kernel learning, it has thus far not been compared to the state-of-the-art in ensemble classification. Thus, this paper puts forward a detailed comparison of FI-FM based ensemble methods, specifically the DeFIMKL algorithm, with state-of-the art ensemble methods including Adaboost, Bagging, Random Forest and Majority Voting over 20 public datasets from the UCI machine learning repository. The results on the selected datasets suggest that the FI based ensemble classifier performs both well and efficiently, indicating that it is a viable alternative when selecting ensemble classifiers and indicating that the non-linear fusion of decision level outputs offered by the FI provides expected potential and warrants further study

    Targeting landscapes to identify mitigation options in smallholder agriculture

    Get PDF
    This chapter presents a method for targeting landscapes with the objective of assessing mitigation options for smallholder agriculture. It presents alternatives in terms of the degree of detail and complexity of the analysis, to match the requirement of research and development initiatives. We address heterogeneity in land-use decisions that is linked to the agroecological characteristics of the landscape and to the social and economic profiles of the land users. We believe that as projects implement this approach, and more data become available, the method will be refined to reduce costs and increase the efficiency and effectiveness of mitigation in smallholder agriculture. The approach is based on the assumption that landscape classifications reflect differences in land productivity and greenhouse gas (GHG) emissions, and can be used to scale up point or field-level measurements. At local level, the diversity of soils and land management can be meaningfully summarized using a suitable typology. Field types reflecting small-scale fertility gradients are correlated to land quality, land productivity and quite likely to GHG emissions. A typology can be a useful tool to connect farmers' fields to landscape units because it represents the inherent quality of the land and human-induced changes, and connects the landscape to the existing socioeconomic profiles of smallholders. The method is explained using a smallholder system from western Kenya as an example
    corecore