CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Automated underwriting in life insurance: Predictions and optimisation
Authors
D Gandhi
I Guyon
+10 more
JH Friedman
L Guelman
MK Joram
N Arora
PM Granitto
Q Hu
R Jensen
T Fawcett
V Kacelan
VF Rodriguez-Galiano
Publication date
1 January 2018
Publisher
'Springer Science and Business Media LLC'
Doi
Cite
Abstract
© Springer International Publishing AG, part of Springer Nature 2018. Underwriting is an important stage in the life insurance process and is concerned with accepting individuals into an insurance fund and on what terms. It is a tedious and labour-intensive process for both the applicant and the underwriting team. An applicant must fill out a large survey containing thousands of questions about their life. The underwriting team must then process this application and assess the risks posed by the applicant and offer them insurance products as a result. Our work implements and evaluates classical data mining techniques to help automate some aspects of the process to ease the burden on the underwriting team as well as optimise the survey to improve the applicant experience. Logistic Regression, XGBoost and Recursive Feature Elimination are proposed as techniques for the prediction of underwriting outcomes. We conduct experiments on a dataset provided by a leading Australian life insurer and show that our early-stage results are promising and serve as a foundation for further work in this space
Similar works
Full text
Available Versions
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1007%2F978-3-319-9...
Last time updated on 10/08/2021
OPUS - University of Technology Sydney
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:opus.lib.uts.edu.au:10453/...
Last time updated on 18/10/2019