2,075 research outputs found

    Taking stock of SLSN and LGRB host galaxy comparison using a complete sample of LGRBs

    Get PDF
    Long gamma-ray bursts (LGRBs) and superluminous supernovae (SLSNe) are both explosive transients with very massive progenitor stars. Clues about the nature of the progenitors can be found by investigating environments in which such transients occur. While studies of LGRB host galaxies have a long history, dedicated observational campaigns have only recently resulted in a high enough number of photometrically and spectroscopically observed SLSN hosts to allow statistically significant analysis of their properties. In this paper we make a comparison of the host galaxies of hydrogen-poor (H-poor) SLSNe and the Swift/BAT6 sample of LGRBs. In contrast to previous studies we use a complete sample of LGRBs and we address a special attention to the comparison methodology and the selection of SLSN sample whose data have been compiled from the available literature. At intermediate redshifts (0.3 < z < 0.7) the two classes of transients select galaxies whose properties (stellar mass, luminosity, star-formation rate, specific star-formation rate and metallicity) do not differ on average significantly. Moreover, the host galaxies of both classes of objects follow the fundamental metallicity relation and the fundamental plane of metallicity. In contrast to previous studies we show that at intermediate redshifts the emission line equivalent widths of the two populations are essentially the same and that the previous claims regarding the higher fraction of SLSN hosts among the extreme emission line galaxies with respect to LGRBs are mostly due to a larger fraction of strong-line emitters among SLSN hosts at z < 0.3, where samples of LGRB hosts are small and poorly defined.Comment: 7 pages, 4 figures, accepted to Astronomy & Astrophysic

    Design and characterization of a biomimetic composite inspired to human bone

    Get PDF
    Many biological materials are generally considered composites, made of relatively weak constituents and with a hierarchical arrangement, resulting in outstanding mechanical properties, difficult to be reached in man-made materials. An example is human bone, whose hierarchical structure strongly affects its mechanical performance, toughness in particular, by activating different toughening mechanisms occurring at different length scales. At microscale, the principal toughening mechanism occurring in bone is crack deflection. Here, we study the structure of bone and we focus on the role of the microstructure on its fracture behaviour, with the goal of mimicking it in a new composite. We select the main structural features, the osteons, which play a crucial role in leading to crack deflection, and we reproduce them in a synthetic composite. The paper describes the design, manufacturing and characterization of a newly designed composite, whose structure is inspired to the Haversian structure of cortical bone, and that of a classic laminate developed for comparative reasons. We conclude with a critical discussion on the results of the mechanical tests carried out on the new composite and on the comparative laminate, highlighting strengths and shortcomings of the new biomimetic material

    Mechanics of collagen-hydroxyapatite model nanocomposites

    Get PDF
    Bone is a hierarchical biological composite made of a mineral component (hydroxyapatite crystals) and anorganic part (collagen molecules). Small-scale deformation phenomena that occur in bone are thought tohave a significant influence on the large scale behavior of this material. However, the nanoscale behaviorof collagen–hydroxyapatite composites is still relatively poorly understood. Here we present a molec-ular dynamics study of a bone model nanocomposite that consist of a simple sandwich structure ofcollagen and hydroxyapatite, exposed to shear-dominated loading. We assess how the geometry of thecomposite enhances the strength, stiffness and capacity to dissipate mechanical energy. We find that H-bonds between collagen and hydroxyapatite play an important role in increasing the resistance againstcatastrophic failure by increasing the fracture energy through a stick-slip mechanism

    Effect of delamination on the fatigue life of GFRP: A thermographic and numerical study

    Get PDF
    Delamination is the major failure mechanism in composite laminates and eventually leads to material failure. An early-detection and a better understanding of this phenomenon, through non-destructive assessment, can provide a proper in situ repair and allow a better evaluation of its effects on residual strength of lightweight structural components. Here we adopt a joint numerical-experimental approach to study the effect of delamination on the fatigue life of glass/epoxy composites. To identify and monitor the evolution of the delamination during loading, we carried out stepwise cyclic tests coupled with IR-thermography on both undamaged and artificially-damaged samples. The outcome of the tests shows that IR-thermography is able to identify a threshold stress, named damage stress ?D, which is correlated to the damage initiation and the fatigue performance of the composite. Additionally, we performed FE-simulations, implementing the delamination by cohesive elements. Such models, calibrated on the basis of the experimental fatigue results, can provide a tool to assess the effect of parameters, such as the delamination size and location and composite stacking sequence, on the residual strength and fatigue life of the composite material

    Microbial assisted phytodepuration for water reclamation: Environmental benefits and threats

    Get PDF
    Climate changes push for water reuse as a priority to counteract water scarcity and minimize water footprint especially in agriculture, one of the highest water consuming human activities. Phytodepuration is indicated as a promising technology for water reclamation, also in the light of its economic and ecological sustainability, and the use of specific bacterial inocula for microbial assisted phytodepuration has been proposed as a further advance for its implementation. Here we provided an overview on the selection and use of plant growth promoting bacteria in Constructed Wetland (CW) systems, showing their advantages in terms of plant growth support and pollutant degradation abilities. Moreover, CWs are also proposed for the removal of emerging organic pollutants like antibiotics from urban wastewaters. We focused on this issue, still debated in the literature, revealing the necessity to deepen the knowledge on the antibiotic resistance spread into the environment in relation to treated wastewater release and reuse. In addition, given the presence in the plant system of microhabitats (e.g. rhizosphere) that are hot spot for Horizontal Gene Transfer, we highlighted the importance of gene exchange to understand if these events can promote the diffusion of antibiotic resistance genes and antibiotic resistant bacteria, possibly entering in the food production chain when treated wastewater is used for irrigation. Ideally, this new knowledge will lead to improve the design of phytodepuration systems to maximize the quality and safety of the treated effluents in compliance with the 'One Health' concept

    Tailored Torsion and Bending-Resistant Avian-Inspired Structures

    Get PDF
    The escalating demand for torsion- and bending-resistant structures paired with the need for more efficient use of materials and geometries, have led to novel bio-inspired ingenious solutions. However, lessons from Nature could be as inspiring as they are puzzling: plants and animals offer an enormous range of promising but hierarchically complex configurations. Avian bones are prominent candidates for addressing the torsional and bending issue. They present a unique intertwining of simple components: helicoidal ridges and crisscrossing struts, able to bear flexural and twisting actions of winds. Here, it is set how to harmonically move from the natural to the engineering level to formalize and analyze the biological phenomena under controlled design conditions. The effect of ridges and struts is isolated and combined toward tailored torsion and bending-resistant arrangements. Then the biological level is revisited to extrapolate the avian allometric design approach and is translated into multiscale lightweight structures at the engineering level. This study exploits the complexity of Nature and the scalability that characterizes the evolutionary design of bird bones through the design and fabrication versatility allowed by additive manufacturing technologies. This paves the way for exploring the transferability of the proposed solution at multiple engineering scales

    Fatigue behaviour of a GFRP laminate by thermographic measurements

    Get PDF
    Composite materials are widely used to build structural components, thanks to their mechanical properties. Those are generally considered ‘engineering materials’, since they are tailored to meet specific requirements. Due to their use for structural components, it is important to know their mechanical behaviour, especially under cyclic loads. At present, there is a common interest, among researchers, to study the mechanical behaviour of composites, by means of both traditional and innovative techniques, with the final purpose of making previsions regarding their service life. In fact, due to their composite nature, they behave in a different mode compared to homogeneous materials. This study is focused on a glass fibre-reinforced plastic (GFRP); the aim of this work is to study its fatigue behaviour, from both the mechanical and the thermal points of view. The main reason is that there is a lack of knowledge, in the literature, about the fatigue of composites. In this study, a GFR laminate was characterized under static and dynamic loading conditions; during the experimental tests, thermal measurements were carried out by means of an IR-thermal camera. Temperature measurements were done during the static tests, whereas in the dynamic tests the dissipated energy was measured, by using the dissipation method (D-mode). Then, various criteria for fatigue life estimation were applied fitting the experimental data. Since different thermographic techniques have been used to estimate the fatigue behaviour, a final comparison between the experimental data and the predicted fatigue behaviour is proposed and discussed, showing a good agreement

    Adverse Perinatal Outcome in Subsequent Pregnancy after Stillbirth by Placental Vascular Disorders

    Get PDF
    Objective: To evaluate outcome in the pregnancy following a stillbirth (SB) by a placental vascular disorders. Study Design: A prospective, observational, multicenter study was conducted in woman with a history of stillbirth (> 22 weeks) between 2005 and June 2013, in 3 Italian University Hospitals. Causes of SB were previously identified after extensive investigations. Pregnant women were enrolled within the first trimester. The main outcome was "adverse neonatal outcome", including perinatal death, fetal growth restriction, early preterm birth <33+6 weeks, hypoxicischemic encephalopathy, intracranial hemorrhage or respiratory distress. Results: Out of 364 index pregnancies, 320 women (87.9%) had a subsequent pregnancy during the study period. Forty-seven had an early pregnancy loss. Out of 273 babies, 67 (24.5%) had an adverse perinatal outcome, including 1 SB and 1 early neonatal death (3.7/1000). Women who had a SB related to placental vascular disorders (39.6%), were at higher risk of an adverse neonatal outcome compared with women whose SB was unexplained or resulted from other causes (Adj. OR = 2.1, 95%CI: 1.2-3.8). Moreover, also obesity independently predicts an adverse perinatal outcome (Adj OR = 2.1, 95%CI: 1.1-4.3). Conclusion: When previous SB is related to placental vascular disorders there is a high risk for adverse neonatal outcomes in the subsequent pregnancy. Maternal obesity is an additional risk factor
    • …
    corecore