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Abstract— The global increase in elderly individuals has
led to a rise in fragility fractures and chronic aging-related
diseases, including osteoporosis. In this context, Deep Learn-
ing (DL) offers the potential to analyze bone images to aid
researchers and clinicians in studying its health starting from
the microscale. Previous studies demonstrate the effectiveness
of DL in segmenting lacunae and classifying bone tissue micro-
states from Synchrotron-Radiation micro-Computed Tomog-
raphy (SR-microCT) images. However, the generalizability of
these models, the laborious work in labeling tiny structures
in high-dimensional images, and the low inter-class variance
in SR-microCT images remain a concern. To fill this void, this
paper proposes a Mask-Guided Attention (MGA) approach that
combines semi-supervised learning lacunae segmentation and
attention methods for healthy and osteoporotic SR-microCT
image classification. In particular, semi-supervised learning
aims at reducing the number of labeled images required during
segmentation. At the same time, the MGA approach exploits the
pseudo-labels predicted to focus the network’s attention on the
informative lacunar structures. Our strategy allows achieving
up to 5.64% and 12.17% accuracy improvements over de-facto
lacunae image segmentation and image classification methods,
as well as more interpretable results.

Clinical relevance—The proposed MGA approach could
enhance the understanding of bone microscale phenomena by
exploiting SR-microCT images, supporting the study and the
diagnosis of osteoporosis in individuals.

I. INTRODUCTION

In the last decades, there has been a notable demographic
increase of elderly individuals within the global popula-
tion. This change has raised the urge to draw attention to
the increasing occurrence of fragility fractures and chronic
diseases as aging-related issues. In particular, osteoporosis
stands out as a prominent contributor, leading to a substantial
reduction in bone mineral density, especially in women [1].
Despite the numerous studies targeting the prevention of
bone fracture, its comprehension is still limited to macro
and mesoscale bone, where its occurrence is destructive [2],
[3]. However, the role of microscale bone structures, such
as the lacunar bone microporosities, is yet to be eluci-
dated [4]. Therefore, the interest in bone microscale phe-
nomena emerges in precisely defining the pathology-induced
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alterations at the scale where pharmacological treatments act
to establish effective and targeted preventive strategies [5].

Preliminary attempts to shed some light on bone mi-
croscale mechanisms exploit high-resolution imaging tech-
niques such as stereomicroscopy, scanning electron mi-
croscopy, computed micro-Tomography, and Synchrotron-
Radiation micro-Computed Tomography (SR-microCT) [6].
Between them, SR-microCT electron beam images lacunae
and microcracks at an unprecedented resolution of ∼ 1.6µm
thanks to its phase contrast and the in-situ simultaneous me-
chanical testing [7]. Despite SR-microCT potential, several
image analysis criticalities emerge from thresholding approx-
imations for lacunar detection to interpretability limitations
that make microscale fine-grained differences between sam-
ples unrecognizable by human eyes.

In this complex scenario, Deep Learning (DL) shows
great potential in the analysis of medical images as a
tool for aiding clinicians in evaluating bone health at the
microscale [8]. Buccino et al. have exploited a Convolutional
Neural Network (CNN) to semantically segment lacunae
and microcracks of healthy and osteoporotic patched SR-
microCT human images [9]. However, the datasets employed
for training, validation, and testing purposes consisted of
distinct image slices obtained from the same set of patients, a
choice that raised concerns about the model’s generalizability
to unseen patients’ images. Furthermore, Shen et al. have
successfully employed CNNs to classify mechanical states of
cortical and trabecular bone tissue from SR-microCT images,
but confined to healthy bovine bones [10]. Further problems
arise when considering the high intra-class and small inter-
class variances of microscale images that lead even DL
methods to struggle in identifying visual differences [11].
Networks with attention layers can relieve this problem
by suppressing the noisy areas from the final decision-
making process using hard or soft masking mechanisms,
making the network decision process more transparent and
explainable [12], [13]. Nevertheless, while image segmenta-
tion and classification labeling need to be performed by a
trained expert, generating manually fine boundaries of many
small-sized bone structures across various high-dimensional
images is more arduous because it increases the fatigue
risk, compromising consistency and quality of segmentation.
Finally, although DL has been used for SR-micro CT image
analysis, no efforts have been made to interpret which bone
structure imaged the model concentrates on.



Fig. 1: High-level description of the proposed methodology from patch-selection, to image segmentation and classification.

To overcome these limitations, we propose a Mask-Guided
Attention (MGA) approach to localize the discriminative la-
cunar image regions for fine-grained healthy and osteoporotic
SR-microCT image classification. Our approach, summa-
rized in Figure 1, consists of a semi-supervised learning
approach to let a U-Net semantically segment the lacunae,
an attention module that exploits the predicted masks to
guide the vgg16 to classify healthy from osteoporotic images
even with fined-grained differences, and the visualization of
the class-defining features using GradCAM [14]. The main
contributions of our work are the following: (i) a semi-
supervised learning approach to perform semantic segmenta-
tion of lacunae in SR-microCT images to reduce the number
of labeled images needed; (ii) a vgg16 integrated with an
MGA module to classify healthy and osteoporotic bone SR-
microCT images; (iii) a strategy to improve the classifier
awareness in detecting lacunar structure when distinguishing
subtle inter-class SR-microCT image differences.

II. PROPOSED METHODOLOGY

In this Section, we present an in-depth description of the
proposed solution from the dataset, its pre-processing, the
image segmentation, and the image classification method.

A. Dataset Description and Selection Criteria

This study exploits SR-microCT images from trabecular
samples from three healthy and three osteoporotic human
femoral heads. These samples were imaged using a syn-
chrotron and captured at different strain states for each
anatomical direction: Z1 in the frontal plane, Z2 in the
coronal plane, and Z3 in the posterior plane. The testing
phase consists of preloading the sample from the zero-load
position using three compression step cycles of a motor
plunger. The displacement during these cycles was constant,
while SR-microCT images were acquired simultaneously. A
comprehensive set of 3D images comprising 2048 slices per
volume was obtained for each scan during loading with a
field of view measuring 3.28× 3.28× 2 mm. Each side of
the resulting images had an average dimension of 3300 pixels
and pixel size of 1.6µm. The resulting dataset consisted of
single-channel image volumes containing 32-bit per pixel
intensity information. A selection criterion was applied to
reduce the dataset’s high dimensionality, including 440 and
4 images per patient for the classification and lacunae im-
age segmentation tasks, respectively. Nonconsecutive image
slices were selected from each image volume, ensuring
correspondence between patients. Furthermore, image vol-
umes exhibiting video intensity artifacts were excluded to

mitigate noise disturbances, while the pixels belonging to
lacunar structures visible from the images selected for the
segmentation task were manually labeled by two operators.
Finally, to avoid having the same patient’s images appear in
both the training and validation/testing datasets, we trained
all the models by dividing the image patches patient-wise in
an 80/10/10 pattern given batches of 30 randomly shuffled
image patches and related labels.

B. Data Pre-processing

We design a pre-processing phase with an image enhance-
ment stage to increase the bone structure image contrast and
a patch extraction stage to reduce the memory footprint. The
image enhancement process starts with identifying two dis-
tinct image sets characterized by different gray level ranges:
[0, 1] and [-1, 0], the latter arising from image acquisition
errors. Therefore, we implemented an enhancement pipeline
consisting of three main steps: pre-enhancement, image
segmentation, and morphological post-processing, where the
first and last steps are common to both image sets. First, we
employ min-max normalization to ensure optimal consistency
across various acquisition methods and textures. Moreover,
we effectively enhance the output contrast by saturating the
bottom and top 1% of pixel values. The second step focuses
on segmenting bone structures, where we utilize for the [0, 1]
range the Otsu method, while the K-means pixel clustering
method for the second image set. Finally, in the last step,
we smooth the segmentation contours and prevent voids by
employing binary morphological operations with square- and
disk-shaped structuring elements for opening and closing
operations, respectively. Once the binary segmentation is
obtained, we apply the mask to the previously adjusted
images, setting background pixels to 0-values while retaining
the adjusted image content within the bone region.

In the patch extraction phase, we extract fixed-size patches
by sliding a size k × k patch with a stride of s over
images (Figure 1(a)). This process makes a total number of
[1+W − ks]× [1+H − ks] patches where W and H are image
width and height, respectively. We choose k = s = 55 in our
experiments, considering the available GPU memory. Finally,
we exploited the bone structure image masks to retain the
sole patches that contained at least the 99% of bone tissue
and guaranteeing at least one patch per image volume slice.

C. Semi-Supervised Image Lacunae Segmentation

The encoder-decoder 2D U-Net with skip-connections
inspired the proposed neural network for binary segmenting
lacunar structures [15]. Figure 1(b) shows the U-Net CNN



with its 13 layers. The encoder consists of two repeated
3×3 convolutions, each followed by a LeakyReLU activation
function and a 2 × 2 max pooling operation with s = 2
for downsampling. The decoder consists of a feature map
upsampling followed by a 2×2 convolution that halves the
number of feature map channels, a concatenation with the
cropped feature map from the contracting path, and two 3×3
convolutions, each followed by a LeakyReLU. A final 1×1
convolution maps each 64-component feature vector to the
desired number of classes. We let the U-Net learn in a semi-
supervised mode. In particular, we trained and validated the
first U-Net model (U-Net-1) on the subset of 8 fined labeled
images, corresponding to ∼ 584 patches. After convergence,
we exploit the knowledge gained to generate pseudo-labels
to use as ground truth in the second image subset (∼ 1.2k
patches). Finally, we trained and validated the same U-Net
model (U-Net-2) on a set of 8 manually labeled, and 8
pseudo-labeled images. We trained both models from scratch
using a combination of the Dice Similarity Coefficient (DSC)
and focal losses on foreground pixels by masking the loss to
address the label imbalance problem between the foreground
lacunar structures and the background. The network takes
batches of 30 randomly shuffled image patches and related
labels while Adam optimizes the training with a learning rate
exponentially decaying from 1e−3 for 300 epochs.

D. Attention-based Image Classification

The proposed classification architecture can be divided
into three parts. A CNN to extract the image features
Figure 1(c), which are then input together with their U-Net
predicted segmentations (Section II-C) in the Mask-Guided
Attention (MGA) module (Figure 1(d)) to aid the binary
image classification task forcing the feature extractor to
recognize the informative and discriminative lacunar regions
in images (Figure 1(e)). In particular, the first part employs
a vgg16 pre-trained on ImageNet with 16 layers made by
3×3 filters with s = 1 and LeakyReLU activation function,
followed by a max pool layer of a 2× 2 filter with s = 2,
and 3 fully-connected layers. We take only the feature maps
from the last max pool layer to output the f H×W×C

img image
features, with C the features map channel number.

The second step involves the MGA module, which starts
by performing the fimg average and max pooling, to output
the average Amavg and maximum Ammax spatial attention
maps, respectively. Then, their concatenation is convolved
and normalized through a sigmoid to output the final nor-
malized Am one-channel attention map. Lastly, the current U-
Net predicted image mask drives the learning of the attention
map. In particular, we average pooled the mask to the fimg
size and normalized it to be more noise tolerant (AMGA). To
learn the MGA minimizes the Mean Squared Error (MSE)
loss LMSE = 1

H×W ∑
H
i=1 ∑

W
j=1

∥∥∥Ai, j
MGA −Am

∥∥∥.
As regards the classification step, it takes advantage of

both the original and MGA features, weighting them to
obtain the final output features fout = 0.5 ∗ fimg + 0.5 ∗
(AMGA ∗ fimg), to be sent to the fully final connected layer for

TABLE I: Comparison of lacunae and background segmen-
tation and classification performances. All results are in
percentage [%] and the best underlined.

(a)

Image Segmentation
Model Lacunae DSC Background DSC

vgg16-1 57.48 99.39
U-Net-1 58.52 99.12
vgg16-2 61.92 99.42

ours 63.12 99.37

(b)

Image Classification
Model Accuracy Precision Recall F1-score

ResNet50 50.72 50.66 50.51 50.58
AlexNet 50.91 56.42 50.62 53.36
vgg16 51.21 51.72 51.51 51.61
ours 62.89 65.53 61.11 63.24

classification. The classification task minimizes the combi-
nation of the MSE and Cross-Entropy loss functions L f in =
λ · LMSE + LCE , where λ = 0.1 using stochastic gradient
descent, and 1e−2 learning rate for 300 epochs. Finally, to
show whether the model uses the lacunar structures features
or others for classification, we use GradCAMs.

III. EXPERIMENTAL RESULTS

The PyTorch framework (version 1.13.0) was employed
for conducting all experiments. The data pre-processing
operations were executed on an AMD Ryzen 7 5800X 8-Core
Processor, while training and inference tasks were performed
on an NVIDIA RTX A5000 with 24 GB RAM.

A. Semi-Supervised Image Lacunae Segmentation

We start evaluating the proposed U-Net-1 model DSC
accuracy in predicting the pseudo-labels. We proceed with
the U-Net-2 performance evaluation and conclude by com-
paring the performances achieved retraining on our image set
the state-of-the-art vgg16-based segmentation model without
(vvg16-1) [9] and with the semi-supervised strategy (vvg16-
2). Table I (a) shows that the U-Net-1 model achieves
58.52% and 99.12% lacunae and background average DSC,
respectively. Given the higher U-Net-1 accuracy on the
lacunar structures than the vgg16-1 model, we employed
the first CNN architecture to learn in a semi-supervised
approach. The rationale behind the choice is supported by
the 4.60% and 5.64% lacunae performance improvements
of the subsequent U-Net-2 training from the U-Net-1 and
vgg16-1. Indeed, it achieves a 63.12% average in segment-
ing the lacunae. At the same time, qualitative evaluation
confirms the model’s capability to distinguish the lacunae
from the background. An example of our method outputs
is shown in Figure 2, where it is possible to notice the
resemblance between our results and their corresponding
labels. Furthermore, our method outperforms vgg16-2-based
segmentation model up to 1.20% in DSC improvement for
lacunar structures segmentation with comparable background
accuracy. Finally, it is worth noting that we computed the
DSC by exploiting the manually labeled image patches



Fig. 2: Segmentation with its Ground Truth (GT) and MGA
and vgg16 classification with their GradCAM results for a
healthy (a) and osteoporotic (b) SR-microCT image patch.

and not the pseudo ones during all the experiments, thus
demonstrating the semi-supervised method’s potentiality in
accurately segmenting bone lacunae even with a restricted
amount of training labeled images.

B. Attention-based Image Classification

We evaluate the robustness of our classification method by
comparing accuracy, precision, recall, and F1-score metrics
achieved using majority voting per patient with the ResNet50
employed by Shen et al. [10] and the AlexNet and vgg16
networks selected from State Of the Art. We trained all the
baselines from the ImageNet pre-trained weights. Table I
(b) displays how both shallower and deeper standard net-
works struggle to distinguish the subtle differences between
healthy and osteoporotic images. This aspect is caused by
the absence of architecture adaptations able to find the image
class-defining feature with a low inter-class image variance.
Although the baseline performances slightly overtake random
guessing, we exploited the best-performing vgg16 baseline
as the feature-extraction backbone, given its highest accuracy
among both classes. Thanks to this choice, our attention
method allows us to achieve up to 11.68% average accuracy
improvement over the not-guided vgg16 version, while up
to 12.17% of accuracy improvement over the ResNet50 ex-
ploited by Shen et al.. Furthermore, the trustiness percentage
of the model, when it says that a sample is osteoporotic, is
the highest among all the models given the 65.53% average
precision obtained. Result confirmed by the 12.66% F1-
score improvement given as the harmonic mean between the
precision and recall metrics. Finally, GradCAMs support the
numerical results achieved. Figure 2 clearly shows that the
MGA model interprets the lacunae and their neighbor more
precisely than the not-guided vgg16 baseline. This latter
result confirms that the MGA strategy really employed the
lacunar structure’s features as the most important ones to
distinguish between healthy and osteoporotic conditions.

IV. CONCLUSIONS AND FUTURE WORK

Two problems hinder the performance of CNN-based
methods during SR-microCT image classification: few la-
beled images due to the laborious manual work while seg-
menting tiny structures on high-dimensional images and the

low inter-class image differences. To handle these issues,
we proposed a semi-supervised segmentation approach to
delineate lacunae reducing the number of labeled images, and
a method to help the classifier focus on the most informative
imaged lacunar structures exploiting the mask generated
as an attention map. Experimental results demonstrate that
this approach achieves up to 5.64% and 12.17% accuracy
improvements over state-of-the-art lacunae segmentation and
image classification methods, with more interpretable results.

Future work - We will integrate our strategies into a
multiple-head standalone network for simultaneous image
segmentation and classification to explore if the two tasks
can benefit from one another while learning.
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