25 research outputs found

    Tympanic Membrane Collagen Expression by Dynamically Cultured Human Mesenchymal Stromal Cell/Star-Branched Poly(ε-Caprolactone) Nonwoven Constructs

    Get PDF
    The tympanic membrane (TM) primes the sound transmission mechanism due to special fibrous layers mainly of collagens II, III, and IV as a product of TM fibroblasts, while type I is less represented. In this study, human mesenchymal stromal cells (hMSCs) were cultured on star-branched poly("-caprolactone) (*PCL)-based nonwovens using a TM bioreactor and proper dierentiating factors to induce the expression of the TM collagen types. The cell cultures were carried out for one week under static and dynamic conditions. Reverse transcriptase-polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC) were used to assess collagen expression. A Finite Element Model was applied to calculate the stress distribution on the scaolds under dynamic culture. Nanohydroxyapatite (HA) was used as a filler to change density and tensile strength of *PCL scaolds. In dynamically cultured *PCL constructs, fibroblast surface marker was overexpressed, and collagen type II was revealed via IHC. Collagen types I, III and IV were also detected. Von Mises stress maps showed that during the bioreactor motion, the maximum stress in *PCL was double that in HA/*PCL scaolds. By using a *PCL nonwoven scaold, with suitable physico-mechanical properties, an oscillatory culture, and proper dierentiative factors, hMSCs were committed into fibroblast lineage-producing TM-like collagens

    Exoskeleton-Robot Assisted Therapy in Stroke Patients: A Lesion Mapping Study

    Get PDF
    Background: Technology-supported rehabilitation is emerging as a solution to support therapists in providing a high-intensity, repetitive and task-specific treatment, aimed at improving stroke recovery. End-effector robotic devices are known to positively affect the recovery of arm functions, however there is a lack of evidence regarding exoskeletons. This paper evaluates the impact of cerebral lesion load on the response to a validated robotic-assisted rehabilitation protocol.Methods: Fourteen hemiparetic patients were assessed in a within-subject design (age 66.9 ± 11.3 years; 10 men and 4 women). Patients, in post-acute phase, underwent 7 weeks of bilateral arm training assisted by an exoskeleton robot combined with a conventional treatment (consisting of simple physical activity together with occupational therapy). Clinical and neuroimaging evaluations were performed immediately before and after rehabilitation treatments. Fugl-Meyer (FM) and Motricity Index (MI) were selected to measure primary outcomes, i.e., motor function and strength. Functional independance measure (FIM) and Barthel Index were selected to measure secondary outcomes, i.e., daily living activities. Voxel-based lesion symptom mapping (VLSM) was used to determine the degree of cerebral lesions associated with motor recovery.Results: Robot-assisted rehabilitation was effective in improving upper limb motor function recovery, considering both primary and secondary outcomes. VLSM detected that lesion load in the superior region of the corona radiata, internal capsule and putamen were significantly associated with recovery of the upper limb as defined by the FM scores (p-level < 0.01).Conclusions: The probability of functional recovery from stroke by means of exoskeleton robotic rehabilitation relies on the integrity of specific subcortical regions involved in the primary motor pathway. This is consistent with previous evidence obtained with conventional neurorehabilitation approaches

    A consensus guide to using functional near-infrared spectroscopy in posture and gait research

    Get PDF
    BACKGROUND: Functional near-infrared spectroscopy (fNIRS) is increasingly used in the field of posture and gait to investigate patterns of cortical brain activation while people move freely. fNIRS methods, analysis and reporting of data vary greatly across studies which in turn can limit the replication of research, interpretation of findings and comparison across works. RESEARCH QUESTION AND METHODS: Considering these issues, we propose a set of practical recommendations for the conduct and reporting of fNIRS studies in posture and gait, acknowledging specific challenges related to clinical groups with posture and gait disorders. RESULTS: Our paper is organized around three main sections: 1) hardware set up and study protocols, 2) artefact removal and data processing and, 3) outcome measures, validity and reliability; it is supplemented with a detailed checklist. SIGNIFICANCE: This paper was written by a core group of members of the International Society for Posture and Gait Research and posture and gait researchers, all experienced in fNIRS research, with the intent of assisting the research community to lead innovative and impactful fNIRS studies in the field of posture and gait, whilst ensuring standardization of research

    Motor-Imagery EEG-Based BCIs in Wheelchair Movement and Control: A Systematic Literature Review

    No full text
    The pandemic emergency of the coronavirus disease 2019 (COVID-19) shed light on the need for innovative aids, devices, and assistive technologies to enable people with severe disabilities to live their daily lives. EEG-based Brain-Computer Interfaces (BCIs) can lead individuals with significant health challenges to improve their independence, facilitate participation in activities, thus enhancing overall well-being and preventing impairments. This systematic review provides state-of-the-art applications of EEG-based BCIs, particularly those using motor-imagery (MI) data, to wheelchair control and movement. It presents a thorough examination of the different studies conducted since 2010, focusing on the algorithm analysis, features extraction, features selection, and classification techniques used as well as on wheelchair components and performance evaluation. The results provided in this paper could highlight the limitations of current biomedical instrumentations applied to people with severe disabilities and bring focus to innovative research topics

    A Computational Fluid Dynamics Study to Compare Two Types of Arterial Cannulae for Cardiopulmonary Bypass

    No full text
    Thanks to recent technological and IT advances, there have been rapid developments in biomedical and health research applications of computational fluid dynamics. This is a methodology of computer-based simulation that uses numerical solutions of the governing equations to simulate real fluid flows. The aim of this study is to investigate, using a patient-specific computational fluid dynamics analysis, the hemodynamic behavior of two arterial cannulae, with two different geometries, used in clinical practice during cardiopulmonary bypass. A realistic 3D model of the aorta is extracted from a subject’s CT images using segmentation and reverse engineering techniques. The two cannulae, with similar geometry except for the distal end (straight or curved tip), are modeled and inserted at the specific position in the ascending aorta. The assumption of equal boundary conditions is adopted for the two simulations in order to analyze only the effects of a cannula’s geometry on hemodynamic behavior. Simulation results showed a greater percentage of the total output directed towards the supra-aortic vessels with the curved tip cannula (66% vs. 54%), demonstrating that the different cannula tips geometry produces specific advantages during cardiopulmonary bypass. Indeed, the straight one seems to generate a steadier flow pattern with good recirculation in the ascending aorta
    corecore