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Mechanical testing of glutaraldehyde
cross-linked mitral valves. Part two:
Elastic and viscoelastic properties of
chordae tendineae

Matthew Constable1, Rhiannon Northeast1, Bernard M Lawless1,2,
Hanna E Burton1, Vera Gramigna3,4, Kheng Lim Goh5, Keith G Buchan6

and Daniel M Espino1

Abstract
The aim of this study was to assess whether the mechanical properties of mitral valve chordae tendineae are sensitive to
being cross-linked under load. A total 64 chordae were extracted from eight porcine hearts. Two chordae (posterior
basal) from each heart were subjected to uniaxial ramp testing and six chordae (two strut, two anterior basal and two
posterior basal) were subjected to dynamic mechanical analysis over frequencies between 0.5 and 10 Hz. Chordae were
either cross-linked in tension or cross-linked in the absence of loading. Chordae cross-linked under load transitioned
from high to low extension at a lower strain than cross-linked unloaded chordae (0.07 cf. 0.22), with greater pre-
transitional (30.8 MPa cf. 5.78 MPa) and post-transitional (139 MPa cf. 74.1 MPa) moduli. The mean storage modulus of
anterior strut chordae ranged from 48 to 54 MPa for cross-linked unloaded chordae, as compared to 53–61 MPa cross-
linked loaded chordae. The mean loss modulus of anterior strut chordae ranged from 2.3 to 2.9 MPa for cross-linked
unloaded chordae, as compared to 3.8–4.8 MPa cross-linked loaded chordae. The elastic and viscoelastic properties of
chordae following glutaraldehyde cross-linking are dependent on the inclusion/exclusion of loading during the cross-
linking process; with loading increasing the magnitude of the material properties measured.
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Introduction

Chordae tendineae connect papillary muscles, attached
to the left ventricle, to the anterior and posterior leaflets
of the mitral valve.1,2 There are four types of chordae,
characterised by their insertion points and correspond-
ing geometry.1,3–6 Marginal chordae, which insert into
the free edge of the leaflet, are often thinner and less
extensible than other chordae.3 Basal (referred to as
rough zone chordae by Lam et al.1) and strut chordae
are thicker in diameter and insert between the free edge
of the leaflet and the annulus.5 Commissural chordae
branch radially and insert into both leaflets.1,7 Strut
chordae are thick basal chords which insert into the
anterior leaflet, whereas both marginal and basal chor-
dae insert into both the anterior and posterior leaf-
lets.1,3 Marginal chordae are important in ensuring the
mitral valve retains its competence,8 while strut chordae

enable physiological mitral valve leaflet motion9–11 and
may have a role in valve competence during annular
dilation.12
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Failure of chordae is associated with mitral valve
prolapse, regurgitation and billowing.5 Repair of the
valve or its chordae13–15 or surgical replacement are
two possible clinical procedures.5 Repair can be per-
formed so as to retain native chordae, resulting in a less
invasive procedure.3,5,16–18 Full replacement could use
either a bioprosthetic or mechanical replacement
valve.19 Studies into heart valve bioprosthetics have
largely been oriented around aortic valve replacements
where tissues are treated with glutaraldehyde as a fixa-
tive.20,21 Studies assessing the feasibility of performing
mitral valve replacement with a mitral valve bioprosth-
esis22 would ideally include the mitral subvalvular
apparatus, leading to glutaraldehyde cross-linked
chordae.

Cross-linking of heart valves with glutaraldehyde
has typically been associated with increased tissue stiff-
ness.21,23 However, glutaraldehyde treatment of porcine
tissue valves has shown contradictory results. For
instance, under bending and shear, tissue stiffness has
been observed to increase.21,24 Under tension, either
glutaraldehyde has little impact on tissue stiffness25 or
only alters part of the stress-strain relationship26; alter-
natively, it decreases in tissue extensibility27 and reduces
the ultimate tensile strength of marginal chordae.19 A
recent study of ours on dynamic viscoelasticity found
that glutaraldehyde treatment decreased both storage
and loss moduli of chordae28; paradoxically, our in
vitro observations of glutaraldehyde-treated mitral
valves identified limited (not increased) mobility.22

Although the mechanical properties of natural mitral
valve chordae are well documented,6,29–33 there are
inconsistencies in findings from studies of chordae
which focus on glutaraldehyde treatment.

The aim of this study is to evaluate whether glutaral-
dehyde cross-linking under tension, or in the absence of
loading, alters the mechanical properties of mitral valve
chordae tendineae. Chordae in tension were cross-
linked in situ within an intact mitral valve.22 Chordae
cross-linked in the absence of loading were cross-linked
following excision from the mitral valve. Material prop-
erties have been evaluated using a uniaxial ramp based
elastic characterisation test,34 and through dynamic
mechanical analysis (DMA). The latter is a technique
used to determine the storage and loss moduli of a vis-
coelastic material,7,35–37 which characterise the ability

of a material to store and dissipate energy, respectively.
In this study, data recently published28 on the viscoelas-
tic properties of basal chordae following glutaraldehyde
fixation are compared to the mechanical behaviour of
equivalent basal chordae from porcine mitral valves in
Part-1 of this study.22

Methods

Mitral valve specimens

A total of 64 chordae (n) were extracted from eight por-
cine hearts (N). Two chordae (posterior basal) from each
heart were subjected to uniaxial ramp testing and six
chordae (two strut, two anterior basal and two posterior
basal) were subjected to DMA testing. Hearts were fro-
zen upon extraction and delivered frozen and sealed by
Fresh Tissue Supplies (Fresh Tissue Supplies, East
Sussex, UK). They were stored at 240�C wrapped in tis-
sue paper coated in Ringer’s solution following standard
procedure.7,38 Freezing the tissues using this method has
mostly not been found to adversely affect the mechani-
cal properties of soft biological connective tissues.39,40

Viscoelastic data from four of the hearts (N=4)
forms the basis of a previous study on glutaraldehyde
cross-linked chordae (under no loading).28 The other
four hearts (N=4) were used for Part-1 of this study
(i.e. cross-linked under tension).22 Chordae from the
former study were used as a measure of chordae cross-
linked in the absence of loading; their dynamic viscoe-
lastic properties are available in literature28 and are
hereby referred to as ‘cross-linked unloaded’; that study
includes control data. Chordae from this current study,
instead, were cross-linked under tension. This tensile
load resulted from their attachment to a papillary mus-
cle annular ring.41 Chordae cross-linked under tension
are hereby referred to as ‘cross-linked loaded’; their
mechanical properties have not been reported else-
where. Both ‘cross-linked unloaded’ and ‘cross-linked
loaded’ chordae have undergone mechanical testing
using the same testing procedure. The ‘cross-linked
loaded’ chordae were excised following the full testing
undertaken during Part-1 of this study.22 Therefore,
this current study reports on the mechanical behaviour
of cross-linked unloaded and cross-linked loaded chor-
dae tendineae as outlined in Table 1.

Table 1. Number of test chordae (n) used for each test. For each test category the test specimens were obtained from four hearts
(N). AL-S refers to anterior leaflet strut chordae, AL-B to anterior leaflet basal chordae, PL-B to posterior leaflet basal chordae.

Treatment Uniaxial
tensile
test

Dynamic mechanical analysis

PL-B AL-S AL-B PL-B

Controls (not treated for cross links)a 8 8 7b 8
Cross-linked, with tissue in tension 8 8 8 8
Cross-linked, in absence of loadinga 8 8 8 8

aSpecimens referred to previous report.28.
bn = 7 due to the absence of suitable chord.
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Cross-linking of chordae

Cross-linked unloaded chordae were fixed using 0.6%
glutaraldehyde (Fluka Analytical, Sigma Aldrich, St
Louis, MO, USA) solution diluted with 0.2M phos-
phate buffered solution (PBS; Sigma Aldrich,
Darmstadt, Germany).21,26,42 The glutaraldehyde con-
centration was chosen since it is often used for biopros-
thetic replacements.19,26,27 Samples were submerged
within 5ml of the glutaraldehyde solution for 1 h.
Preliminary testing confirmed that no differences were
identifiable when chordae were fixed for 1 and 24h.
Following fixation, specimens were washed three-times
in 0.2M PBS for 10min to remove excess
glutaraldehyde.

The cross-linking procedure for cross-linked loaded
chordae is described fully in Part-1 of this study.22

Briefly, full mitral valves were fixed with 0.6% glutaral-
dehyde diluted with 0.2M PBS for 24 h, while loaded
under tension. Extracted chordae were refrigerated in
0.6% glutaraldehyde until used for materials testing.43

Materials testing

Elastic characterisation. Mechanical testing was performed
using a Bose ElectroForce 3200 testing machine (Bose
Corporation, Electroforce Systems Group, Minnesota,
USA).3,7,44 Emery paper was used to coat the grips,
which held the chordae in place. The grips were then
attached to the testing machine ready for uniaxial testing
along the length of the chord (Figure 1).

Two posterior basal chordae from each heart (i.e.
totaling n=8 specimens per cross-linked group) were
subjected to uniaxial ramp testing. Each chord was sev-
ered at the level of the leaflet and at the level of the
papillary muscle, so that each specimen consisted only
of the chord. Chordae were gripped and then mounted
to the materials testing machine resulting in a gauge
length for material’s testing of 5mm and a preload of
0.1N. Length and chordal diameter were measured
using ImageJ 1.0 software (ImageJ, Maryland, USA).
A constant displacement rate of 0.1mm/s was applied
up to a limit of 4 N to prevent chordal rupture.6 Each
chord was loaded ten times with a resting time of 1min
between tests. Force and displacement were measured
using WinTest 4.1 software (Bose Corporation,
Electroforce Systems Group, Minnesota, USA).
Specimens were maintained hydrated throughout test-
ing using Ringer’s solution.7,38,45

Tangent moduli (E) were calculated according to
equations (1) and (2). Tangent moduli were calculated
for both an initial high-extension phase and a subse-
quent low-extension phase for each chord. These two
phases are typically referred to as pre- and post-
transitional moduli.34

E=
k

S
ð1Þ

k=
dF

dl
ð2Þ

Where F is the applied tensile load, dl the extension and
S is a shape factor, approximated to be cylindrical for
chordae and defined by:

S=
pd2

4l
ð3Þ

Where d is the average diameter of the chord and l is its
gauge length (i.e. 5mm; see above).7,38

Visco-elastic characterisation. DMA was performed on six
basal chordae from each heart (i.e. n=24 specimens;
not previously subjected to uniaxial ramp tests) using a
Bose ElectroForce 3200 testing machine (Bose
Corporation, Electroforce Systems Group, Minnesota,
USA).7,38 A frequency sweep of 0.5, 1, 1.2, 3.5, 5, 7 and
10Hz was used.7,28 Specimens were preloaded sinusoid-
ally at 1Hz for 100 cycles.7 Chordae were loaded to a
mean tensile force of 2 N (with an oscillating force of
1–3 N); ensuring that viscoelastic properties were mea-
sured in a post-transitional linear elastic range.34

During DMA, an oscillating force was applied to a
specimen and the out-of-phase displacement was mea-
sured.35,46 Fourier analyses of the recorded force and
displacement waves, at each frequency, is performed.
From this, the complex stiffness (k*) and the phase
angle (d), between force and displacement waves is cal-
culated. Storage (E’) and loss (E’’) moduli were then
derived using equations (4) and (5). Further details on
DMA are available elsewhere.35

E
0
= k�cosd=S ð4Þ

Figure 1. Experimental set-up for uniaxial testing. A chord is
attached to the grips. The top grip is attached to the cross-head
of the testing machine, which applied a load, while the bottom
grip is fixed to the base of the testing machine.
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E
00
= k�sind=S ð5Þ

Where S is a shape factor defined in equation (3).

Data analysis

Statistical analysis was performed using SigmaPlot
v12.0 (SYSTAT, San Jose, CA, USA). The hypothesis
(hereafter known as the tension-crosslink hypothesis)
was that tension applied to chordae tissue during glu-
taraldehyde cross-linking alters the viscoelastic proper-
ties of the tissue. To test this hypothesis storage and
loss moduli were evaluated for cross-linked loaded and
cross-linked unloaded chordae using a Wilcoxon rank
sum tests for unpaired, non-parametric data. Dunn’s
multiple comparisons test was used to evaluate signifi-
cant differences between the cross-linked loaded chor-
dal specimens. Differences due to the treatment were
considered significant if p \ 0.05. Full explanation on
the statistical analysis for viscoelastic data on cross-
linked unloaded chordae is available elsewhere.28

Results

Elastic characterisation

Ramp testing revealed differences between untreated
and glutaraldehyde cross-linked posterior basal chor-
dae. Untreated chordae transitioned at a lower strain
than cross-linked unloaded chordae (0.15 and 0.22,
respectively; Figure 2(a) and (b)). However, cross-
linked loaded chordae transitioned at a strain of 0.07
(Figure 2(c)); the data was spread over a much nar-
rower range too (cf. Figure 2(a) and (b) against Figure
2(c)). The mean pre-transitional modulus for cross-
linked unloaded posterior basal chordae was 5.78MPa,
as compared to 30.8MPa for cross-linked loaded pos-
terior basal chordae. The mean post-transitional modu-
lus for cross-linked unloaded posterior basal chordae
was 74.1MPa as compared to 139MPa for cross-linked
loaded posterior basal chordae.

Dynamic viscoelasticity

Wilcoxon rank sum tests revealed that cross-linked
loaded chordae typically had larger storage moduli than
cross-linked unloaded chordae over the frequency range
tested (Figure 3; Table 2; p \ 0.05). The mean storage
modulus of anterior strut chordae ranged from 48 to
54MPa over the frequency range tested, for cross-
linked unloaded chordae as compared to 53–61MPa
for cross-linked loaded chordae. The mean storage
modulus for anterior basal chordae ranged from 67 to
76MPa for cross-linked unloaded chordae as compared
to 109–126MPa for cross-linked loaded chordae.
Dunn’s multiple comparisons test revealed that the dif-
ference is significant (p \ 0.05) at 1Hz and at frequen-
cies above 3.5Hz. For posterior basal chordae the
ranges were 78–87MPa for cross-linked unloaded

chordae as compared to 177–207MPa for cross-linked
loaded chordae. The difference is significant (p \ 0.05)
for all frequencies.

Cross-linked loaded chordae typically had greater
loss moduli than cross-linked unloaded chordae over

Figure 2. Uniaxial ramp test data excluding outliers for (a)
untreated chordae (58 results), (b) cross-linked unloaded (63
results) and (c) cross-linked loaded (70 results) chordae. The
data presented includes up to nine repeats per chord, with each
graph including data for eight basal chordae obtained from the
posterior leaflet of four hearts.
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the frequency range tested (Figure 4). The mean loss
modulus of anterior strut chordae ranged from 2.3 to
2.9MPa, over the frequency range tested, for cross-
linked unloaded chordae as compared to 3.8–4.8MPa
for cross-linked loaded chordae. The mean loss modu-
lus for anterior basal chordae ranged from 3.6 to
4.1MPa for cross-linked unloaded chordae as com-
pared to 6.7 to 8.1MPa for cross-linked loaded chor-
dae. The difference is significant (p \ 0.05) for
frequencies below 7Hz. For posterior basal chordae
the ranges were 4.3–4.9MPa for cross-linked unloaded
chordae as compared to 12.1–14.7MPa for cross-linked
loaded. The difference is significant (p \ 0.05) for all
frequencies.

Discussion

This study has tested the tension-crosslink hypothesis,
that applying tension to the chordae tissue during glu-
taraldehyde cross-linking alters their viscoelastic prop-
erties. The findings include that the storage and loss
moduli of the loaded tissue were greater than those of
the unloaded tissue, supporting the tension-crosslink
hypothesis. Viscoelastic data recently published28

demonstrated that both the storage and loss modulus
decreased following glutaraldehyde unloaded fixation.
However, in this study we demonstrate that changes in
viscoelastic properties are dependent on the application
of tension during fixation. Elastic characterisation of
posterior basal chordae demonstrated that when chor-
dae were loaded during the cross-linking procedure, the
average strain at which they transitioned from high-
extensibility to low-extensibility was 7%, as compared
to 22% when cross-linked unloaded. The pre- and
post-transitional modulus were greater when cross-
linked loaded too.

Cross-linked loaded chordae were fixed with glutar-
aldehyde while chordae were held under tension, which
would be expected to align fibrils and uncrimp collagen.
Though little is known about the impact of glutaralde-
hyde treatment under tension, the effects of dynamic

fixation have been investigated.47 Dynamic fixation can
affect the fibril crimp of collagen, and consequently
minimise the differences between fixed and normal tis-
sue.48 Although the cross-linked loaded chordae were
not fixed dynamically, dynamic fixation would induce
tension into the tissue, thus, causing the collagen to
uncrimp. Assuming that one source of variability in
mechanical behaviour between chordae is the uncrimp-
ing of collagen, then fixing chordae under tension
would be expected to reduce this source of variability.
Indeed, cross-linked loaded chordae displayed greater
repeatability in elastic behaviour than samples which
were cross-linked unloaded; increased cross-linking
would be expected to occur in a state of lower crimp.

Kayed et al.49 have found that glutaraldehyde cross-
linked tissues resulted in a wider range of orientation of
fibrils than untreated tissues. Analysis of the fibril
extension, based on observation of the change in the
D-period spacing, revealed higher fibril strain in the
cross-linked tissue as compared to untreated tissue, for
given strain in the tissue.49 There are two different rea-
sons why the fibril strain is higher. First, glutaralde-
hyde links act as a constraint to further alignment and
the fibrils are less able to slide past each other, so the
deformation of the tissue is attributed considerably to
fibril stretching.49 Second, for a given tissue strain,
Kayed et al.49 found that there is always a proportion
of fibrils which are not recruited into alignment, in
both glutaraldehyde-treated and untreated tissue. In
particular, the orientation of these non-recruited fibrils
were more spread out in treated tissue as compared to
the untreated tissue.49 The reinforcing efficiency, h, of
a tissue is defined as the stiffness of the tissue in a given
direction expressed as a fraction of what its stiffness
would have been if all its fibrils had been oriented in
that direction.50 Hence, h takes on a value between 1
and 0 where the upper and lower limit, respectively,
implies that all the fibrils are oriented in the direction
of, or perpendicular to, the applied force.50 Thus, the
proportion of the non-recruited fibrils in the
glutaraldehyde-treated tissue would modulate h

Table 2. Viscoelastic properties of cross-linked loaded chordae under a sinusoidally varying load across a range of frequencies.

Frequency (Hz) Anterior strut Anterior basal Posterior basal

E# (MPa)A E$ (MPa)C E# (MPa)A,B E$ (MPa)C,D E# (MPa)B E$ (MPa)D

Mean SD Mean SD Mean* SD Mean SD Mean SD Mean SD

0.5 53.0 33.9 3.8 2.4 109.1 43.6 6.7 2.7 176.7 67.8 12.1 5.7
1 54.9 34.4 4.2 2.6 112.6 45.3 7.3 3.1 183.3 71.2 13.0 6.0
1.2 55.9 35.1 4.2 2.6 114.6 46.6 7.5 3.2 187.4 73.2 13.5 6.2
3.5 58.2 36.4 4.5 2.7 119.7 49.3 7.8 3.6 196.6 77.7 14.0 6.4
5 58.9 36.8 4.4 2.6 122.8 51.1 7.8 3.7 200.6 79.3 14.1 6.3
7 59.8 37.5 4.8 2.8 124.5 52.3 8.1 3.8 203.8 81.0 14.6 6.5
10 60.8 38.4 4.8 2.8 126.4 53.6 8.1 3.8 207.4 82.9 14.7 6.6

SD: standard deviation.

n = 8 *n = 7 due to the absence of suitable chordae.

The letters A,B,C,D are used to signify significant differences. If two chordal type do not share a letter, they are significantly different (p \ 0.05).
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resulting in a value less than 1. It, therefore, seems
likely that cross-linking the tissue while loaded under
tension enables fibrils to become aligned and recruited
into tension, before the process of cross-linking. Thus,
h for glutaraldehyde-treated tissue loaded under ten-
sion is greater than tissue glutaraldehyde-treated under
no load.

The material stiffness of glutaraldehyde-treated
chordae under tension is greater than glutaraldehyde-
treated unloaded in most cases of the DMA frequency
studied. However, there were some cases, namely 0.5
and 1.2Hz (anterior basal chordae, storage modulus)

and 10Hz (anterior basal chordae, loss modulus) where
the results were not compatible with the fibril orienta-
tion argument, presented above. In these isolated sub-
sets of the results, other factors, such as fibril straining
and fibril-fibril sliding, have not been considered in the

Figure 3. A comparison of storage moduli of (a) anterior strut,
(b) anterior basal and (c) posterior basal chordae fixed with
glutaraldehyde while unloaded (blue dots) and loaded (black
dots). Means and 95% confidence intervals are presented.

Figure 4. A comparison of loss moduli of (a) anterior strut,
(b) anterior basal and (c) posterior basal chordae fixed with
glutaraldehyde while unloaded (blue dots) and loaded (black
dots). Means and 95% confidence intervals are presented.

6 Proc IMechE Part H: J Engineering in Medicine 00(0)



development of our arguments and these could inter-
play with fibril alignment. Interfibrillar sliding gener-
ates interfibrillar shear stress and this facilitates load-
transfer to the fibrils.51,52 Kayed et al.49 have found
that initial tissue straining could cause substantial reor-
ientation of the fibrils as well as fibril straining. At
large strains where no further change in orientation
occurs, further contribution to the tissue deformation
could be attributed to relative sliding between fibrils or
even other tissue components.49

Glutaraldehyde fixation is assumed to cause a chem-
ical reaction between the aldehyde groups of glutaral-
dehyde and the e-amine groups of lysine and
hydroxylysine present in collagen.48,53 The result of this
reaction is the formation of cross-links between the col-
lagen fibres. Fixation with glutaraldehyde has resulted
in differences between the pre-and post-transitional
regions of aortic valves with the pre-transitional region
of the curve affected more than after the transition.25

Our results for mitral valve basal chordae suggest that
such findings depend on the state of crimp at which the
cross-linking takes place.

The viscoelastic properties of mitral valve chordae
have previously been characterised by their storage and
loss moduli.7,28,54 Knowledge about the effects of glutar-
aldehyde treatment on the dynamic viscoelasticity of
mitral valve chordae is limited, however, a link between
the fibril crimp of collagen and their extensibility has
been characterised.3 It was shown that thicker chordae
had a smaller crimp period than thinner chordae, and
thus were more highly crimped. This has been used to
characterise differences between the storage modulus of
thick and thin chordae.7 Since fixation is thought to
increase the fibril crimp, and assuming fixation causes the
chordae to become more crimped, one would expect the
storage modulus to decrease due to fixation.28 However,
if chordae are under tension then less crimp is present at
the initial state of fixation, leading to a much higher stor-
age modulus than for cross-linked unloaded chordae. In
addition, Liao and Vesely3 found that the smaller the dia-
meter, the greater number of fibril linkages that can
occur; hence, the magnitude of fibril linkages that could
occur within basal chordae would be larger than strut
chordae. This would explain the greater change in storage
(and loss) moduli for basal than strut chordae.

It is clear from our findings that glutaraldehyde fixa-
tion has altered both the elastic and viscoelastic proper-
ties of basal chordae. Clinically, this will affect the
functionality of bioprosthetic replacements.22 Though
marginal chordae were not considered during this
investigation, it is likely that fixation would affect the
tissues similarly. This is of importance due to the func-
tion of marginal chordae in ensuring valve clo-
sure.7,32,55 Further evaluation of the effect of fixation
under tension would also provide an insight into the
effect of fixation on the internal structure; our current
study strongly supports such further research. Since
alternative fixatives are under investigation, consider-
ing the effect of these alternatives on the dynamic

properties would also be of importance for biopros-
thetic functionality.19

Limitations

The two main limitations of this study are clinical rele-
vance and sample size. There is limited direct clinical
relevance of this current study, beyond potential effects
on the mechanical behaviour of any natural neo-
chordae which might be considered for chordal replace-
ment. However, the key outcome from this study is that
the mechanical behaviour of collagen reinforced, soft
connective tissues which undergo cross-linking will be
dependent on the loading conditions used during cross-
linking. For this current study, priority has been given
to viscoelastic characterisation, to match the baseline
data-set (for unloaded, cross-linked chordae) previ-
ously published.28 For this reason 24 basal chordae
underwent viscoelastic characterisation; sub-divided
according to location of insertion within the mitral
valve. Eight chordae underwent elastic characterisation
per group, which ensured that chordae which under-
went elastic and viscoelastic characterisation were
obtained from the sample porcine heart samples.

Part-122 and Part-2 (hereby presented) of this study
report a range of pre-cycling regimes. In Part-1,22 pre-
liminary testing demonstrated that after the first two
loading cycles, repeatable data was obtained for the
heart valve; the data reported is important in demon-
strating the competence of mitral valves. In Part-2 we
report on material’s characterisation, which is not
directly comparable to the in vitro testing reported for
full valves. However, the pre-cycling reported for elas-
tic and viscoelastic characterisation differ. Viscoelastic
characterisation followed a published protocol for pre-
cycling and testing for the same type of porcine heart
specimens,28 this has enabled direct comparison of the
data obtained in this study with that already published.

No elastic characterisation was reported by
Constable et al.,28 and so a full data-set is reported in
this study (i.e. cross-linked unloaded, cross-linked
loaded and control data). However, only the first load-
ing cycle was excluded from analysis. The rationale
behind this was two-fold. Firstly, from the data
obtained, it was clear that only the first cycle differed
from the subsequent nine repeats tests. Further, the
shift in the stress-strain data when cross-linked under
load is immediately evident (Figure 2(c) cf. Figure 2(a)
and (b)): the transition point from low to high modulus
clearly occurs at a much lower strain, and the variabil-
ity between stress-strain of test samples becomes very
narrow. It is this trend which has been critical in aiding
our assessment of the tension-crosslink hypothesis, in
terms of collagen and its mechanics. Finally, it is worth
noting that for elastic characterisation of soft connec-
tive tissues, stress-strain data only requires one or two
pre-cycling loads to become repeatable,34,56 dynamic
loading can require many more pre-conditioning cycles,

Constable et al. 7



around 100 for chordae, but for tissues such as articu-
lar cartilage this can exceed 1000 cycles.57,58

Conclusion

Glutaraldehyde cross-linking alters the elastic and vis-
coelastic properties of mitral basal chordae tendineae.
However, the use of loading during the cross-linking
increases the post-transitional moduli, storage and loss
moduli, and reduces the transition strain of basal chor-
dae, as compared to cross-linking in an unloaded state.
Therefore, the resultant material properties of chordae
following glutaraldehyde cross-linking is dependent on
the inclusion/exclusion of loading during the cross-
linking process.
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