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Background: Technology-supported rehabilitation is emerging as a solution to support
therapists in providing a high-intensity, repetitive and task-specific treatment, aimed at
improving stroke recovery. End-effector robotic devices are known to positively affect the
recovery of arm functions, however there is a lack of evidence regarding exoskeletons.
This paper evaluates the impact of cerebral lesion load on the response to a validated
robotic-assisted rehabilitation protocol.

Methods: Fourteen hemiparetic patients were assessed in a within-subject design (age
66.9 ± 11.3 years; 10 men and 4 women). Patients, in post-acute phase, underwent
7 weeks of bilateral arm training assisted by an exoskeleton robot combined with a
conventional treatment (consisting of simple physical activity together with occupational
therapy). Clinical and neuroimaging evaluations were performed immediately before and
after rehabilitation treatments. Fugl-Meyer (FM) and Motricity Index (MI) were selected to
measure primary outcomes, i.e., motor function and strength. Functional independance
measure (FIM) and Barthel Index were selected to measure secondary outcomes,
i.e., daily living activities. Voxel-based lesion symptom mapping (VLSM) was used to
determine the degree of cerebral lesions associated with motor recovery.

Results: Robot-assisted rehabilitation was effective in improving upper limb motor
function recovery, considering both primary and secondary outcomes. VLSM detected
that lesion load in the superior region of the corona radiata, internal capsule and putamen
were significantly associated with recovery of the upper limb as defined by the FM scores
(p-level < 0.01).

Conclusions: The probability of functional recovery from stroke by means of exoskeleton
robotic rehabilitation relies on the integrity of specific subcortical regions involved in
the primary motor pathway. This is consistent with previous evidence obtained with
conventional neurorehabilitation approaches.
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INTRODUCTION

Several systematic and meta-analytic reviews have confirmed
that robotic-assisted devices elicit robust motor recovery in
patients with stroke, mainly in relation to the upper limb
intervention (Masiero et al., 2007; Bertani et al., 2017; Lo et al.,
2017). Early research on robotic therapy for the upper limb
was based on end-effector robots, which hold the patient’s hand
or forearm at one point and generate forces at the interface.
Recently this field of study has shifted towards an exoskeleton
device, which overcomes many of the inherent limitations of
end-effector robots (Pignolo, 2009; Lo and Xie, 2012). Compared
to conventional therapy, exoskeletons have the potential to
provide intensive rehabilitation consistently for a longer duration
and irrespective of the skills and fatigue level of the therapist
(Huang and Krakauer, 2009; Lo and Xie, 2012).

The Automatic Recovery Arm Motility Integrated
System (ARAMIS) is a concept robot and prototype for the
neurorehabilitation of the paretic upper limb developed at
the Institute S. Anna—Crotone, Italy. ARAMIS was designed
with two computer-controlled, symmetric and interacting
exoskeletons, which compensate for the inadequate strength and
accuracy of the paretic arm movements and the effect of gravity
during rehabilitation. The basic idea is to exploit proprioceptive
inputs using passive, repetitive, interactive, high-intensive
bilateral movement training, which has been demonstrated to
enhance motor recovery in stroke patients (Stinear et al., 2008;
Choo et al., 2015; Saleh et al., 2017; Gandolfi et al., 2018). This
device has been widely validated (Colizzi et al., 2009; Dolce
et al., 2009; Pignolo et al., 2012) with respect to conventional
neurorehabilitation approaches, demonstrating high degree
of upper limb recovery as assessed by the Fugl-Meyer (FM)
scale (Fugl-Meyer et al., 1975). The FM is a performance-based
impairment index designed to assess motor functioning, balance,
sensation and joint functioning in patients with post-stroke
hemiplegia. Overall, FM together with the Modified Ashworth
Scale (MAS) and functional independance measure (FIM) (Keith
et al., 1987), are the most reliable clinical scales employed to
unravel motor recovering after robotic-treatment in stroke
patients (Bertani et al., 2017).

Despite this large amount of evidence confirming the
effectiveness and robustness of robotic-assisted rehabilitation
in promoting motor recovery the underlying pathophysiology
is still unclear. In fact, some biomarkers have been effectively
demonstrated to predict therapeutic response or recovery
following stroke (Burke Quinlan et al., 2015). Generally, research
has focused on the neural substrate of motor recovery obtained
with a conventional neurorehabilitation approach (Shelton
and Reding, 2001; Murphy and Corbett, 2009; Carrera and
Tononi, 2014; Choo et al., 2015; Lee et al., 2017; Siegel et al.,
2018), whereas little attention has been paid to robotic-assisted
therapy with exoskeleton devices (Formaggio et al., 2013; Fan
et al., 2016; Gandolfi et al., 2018). Overall, preservation of
the corticospinal tract is considered as a hallmark for good
recovery of impaired motor function in patients with brain
injury (Hendricks et al., 2002; Swayne et al., 2008; Stinear,
2010). Within this pathway there are several critical hubs that

have been associated with functional recovery after conventional
therapy. Mounting evidence from functional magnetic resonance
imaging (fMRI), diffusion tensor imaging (DTI) as well as
resting-state functional connectivity studies have demonstrated
that the increased activity in ipsilateral primary motor cortex
and the morphological integrity of the posterior limb of the
capsula interna predict the positive clinical outcome (Shelton
and Reding, 2001; Stinear et al., 2012; Stinear and Ward, 2013;
Favre et al., 2014; Rehme et al., 2015). Moreover, lesions in
the globus pallidus, and putamen (together with corona radiata,
internal capsule) were also associated with poor recovery (Lee
et al., 2017).

This study, thus, assesses the effects of lesion location on the
response to rehabilitation training obtained with an exoskeleton
robot device. The aim is to expand knowledge of the neural
basis of stroke rehabilitation and the prognosis of upper limb
disorders.

MATERIALS AND METHODS

Subjects
We enrolled patients who met the criteria for a first attack
of sub-cortical ischemic stroke recruited at the Sant’Anna
Rehabilitation Center. From an initial cohort of 108 subacute
hemiplegic patients, we enrolled only those who fulfilled the
following criteria: (i) unilateral stroke, (ii) ability to follow verbal
instructions, and (iii) right-handed patients. Exclusion criteria
were (1) bilateral impairment; severe sensory deficits in the
paretic upper limb; (2) pregnancy, epilepsy, aphasia, cognitive
impairment (Mini Mental State Evaluation, MMSE < 24) or
behavioral dysfunction that would influence the patient’s ability
to comprehend or participate in the treatment; (3) botulinum
toxin injections or other medication influencing the function of
the upper-limb; (4) inability to provide informed consent and
(5) and/or pacemakers or other metallic implants incompatible
with the 3T MRI scanner. From the initial cohort, 34 patients
were selected for the rehabilitation program (Figure 1).

All the participants gave written informed consent. The
study was approved by the Ethical Committee of the University
‘‘Magna Graecia’’ of Catanzaro, according to the Helsinki
Declaration.

All patients completed an extensive series of clinical tests
that were administered by an experienced physician who was
blind to any other result. The degree of disability during daily
living activities was assessed with the Barthel Index (Collin et al.,
1988) and the motor strength of the upper-limb was assessed
with the Motricity Index (MI; Collin and Wade, 1990). Patients’
synergistic motor control of the paretic arm was assessed with
the upper extremity (UE) section of the FM (FM-UE; Lindmark,
1988). Further measures included the FIM and the Trunk
Control Test (TCT; Franchignoni et al., 1997).

ARAMIS Hard/Software Structure
The robotic-assisted rehabilitation performed through the
ARAMIS device has been described elsewhere (Colizzi et al.,
2009; Dolce et al., 2009; Pignolo et al., 2012). The ARAMIS
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FIGURE 1 | Flow diagram of participant recruitment and participation in the study: stroke patients participated in an individualized robotic-assisted neurorehabilitation
program (ARAMIS system).

framework is a fully integrated set of software that enables the
therapist to program and manage the rehabilitation procedures.
Briefly, the robotic platform includes two fully-motorized 6 DOF
symmetric exoskeletons (Figure 2). Kinematic and dynamic data
are jointly continuously acquired and stored by the control
system, which evaluates the weight torque and compensates for it
by controlling each upper limb posture and the strength delivered
by the patient to the exoskeleton. Movements are, therefore,
supported by a drive motor, which adjusts its strength on a step-
by-step basis.

Each exoskeleton can record (motion capture) themovements
of the unaffected arm and the patient is requested to replicate
each single movement by the paretic arm in synchronous or
asynchronous modalities depending on the exercise typology
or training program, with continuous compensation for the
paretic arm’s inadequate strength and accuracy. ARAMIS-
assisted rehabilitation is possible in three different modalities:
(1) asynchronous: the patient wears both exoskeletons and
uses the unaffected arm to perform pre-programmed exercises

that are replicated by the paretic arm supported by its own
exoskeleton; (2) synchronous: the unaffected arm paces the
movements to be replicated synchronously and with the same
physical characteristics (such as strength, acceleration, range, and
speed) by the exoskeleton hosting the paretic arm; (3) active-
assisted: when the patient is not able to carry out amovement, the
robot supports the arm strength against gravity, thus replicating
movements executed by the unaffected arm.

Design and Procedure
We used a within-subject design divided into four main stages.
The first stage was based on the recruitment of the patients
(see inclusion criteria reported above). Physiotherapists as
well as data entry assistants were blinded to all phases of
the study. In the second stage, the eligible stroke patients
underwent an MRI examination at baseline (T0). In the
third stage, participants underwent a rehabilitation program
consisting of a validated protocol of exoskeleton-robot
assisted activities (Colizzi et al., 2009; Dolce et al., 2009;
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FIGURE 2 | The robotic-assisted device called Automatic Recovery Arm Motility Integrated System (ARAMIS).

Pignolo et al., 2012) combined with an additional 4–5 h per
week of conventional therapy (Aisen et al., 1997; Volpe et al.,
2000), in agreement with Italian norms on the treatment of
stroke patients. The conventional activities were carried out
by an (blinded) expert therapist and consisted of occupational
therapy exercises together with passive/active mobilization of
upper and lower limbs, trunk control, standing and ambulation.
The robot-assisted rehabilitation programs are summarized in
Figure 3 (Colizzi et al., 2009; Dolce et al., 2009; Pignolo et al.,
2012). The ARAMIS protocol for rehabilitation included 60-min
sessions daily over periods not exceeding 7 weeks. Both single
and multiple movements were scheduled. In the first 2–3 weeks
of treatment, all subjects performed a series of asynchronous
exercises, where the paretic arms repeated each of the exercises
20 times for a total of 200 repetitions per session (Table 1). In the
following 2–3 weeks, the asynchronous exercises were gradually

reduced to 100 per session and replaced by synchronous
exercises (100/session), with the total number remaining
unchanged. The rehabilitation sessions in the active-assisted
modality began following an adequate motor recruitment of
the upper limb where necessary as stipulated in the FM-UE
scale modified by Lindmark and Hamrin (1988; total score
>70), which continued to the end of scheduled treatment
(Figure 3). All patients started rehabilitation periods at the same
time.

Finally, at the end of the 7-week training period, participants
were given a blinded motor assessment, using the same protocol
as at baseline (T1). Twenty patients were removed from the final
analysis: (a) two refused to continue; (b) 12 were hospitalized
and (c) six patients were removed because they did not complete
imaging evaluation. Thus, 14 stroke patients completed the entire
protocol.
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FIGURE 3 | Therapy protocol with ARAMIS.

TABLE 1 | Exercises performed with an exoskeleton robotic device.

Joint Movements

Simple exercises Shoulder elevation: 30◦, 60◦ and 90◦

abduction-adduction: 30◦, 60◦ and 80◦

circling (circle movement on frontal axis)
flexion-extension

Elbow flexion-extension
Forearm pronation-supination

Functional exercises Shoulder and Forearm Shoulder elevation 90◦ + Forearm pronation-supination;
Shoulder and elbow Shoulder elevation 90◦ + Elbow flexion-extension;
Shoulder, elbow and forearm Shoulder elevation 90◦ + Elbow flexion-extension + Forearm pronation-supination;

Shoulder elevation 90◦ + 2 Elbow intermediate flexion-extension + Forearm intermediate pronation-supination

MRI Data Acquisition
All participants underwent the same MRI scanning protocol
immediately before and after rehabilitation. MRI and clinical
assessments were performed in the same day. Patients were
examined using a 3-Tesla GE MR750 scanner (GE Healthcare,
Rahway, NJ, USA). The MRI protocol included whole-brain,
three-dimensional, T1-weighted (BRAVO), spoiled gradient
recall echo (TE/TR = 3.7/9.2 ms, flip angle 12◦, voxel
size = 1 × 1 × 1 mm3), T2-weighted images (TR = 3500 ms,
TE = 20/85 ms) and fast fluid-attenuated inversion-recovery
(FLAIR) axial images (TR = 9500 ms, TE = 100 ms; matrix size
512 × 512, FOV: 24 cm; 36 slices, 4 mm slices, 0 mm gap).

Lesion Identification
Lesion locations and size was performed, using MRIcron
software (version 12, Rorden and Brett, 2000). For each patient,
we manually outlined the lesion area (volume of interest (VOI)
images) on each slice of the FLAIR images. All lesions were
traced by a trained image analyst and by an experienced clinical
neurologist and neuroradiologist, who were blinded to all clinical
data. These specialists worked together to develop a consensus
regarding the extent of the lesion in each individual. The
FLAIR scan and the corresponding lesionmaps were coregistered

onto the T1-weight template MRI scan from the Montreal
Neurological Institute (Brett et al., 2001; Rorden et al., 2007).
Finally, the T1 scan and the VOI images were mapped into
stereotaxic space, using the normalization algorithm provided in
the SPM81 software, which is exceptionally robust to the presence
of lesions (Seghier, 2008). The number of MRI voxels involved in
each stroke lesion was calculated. The lesion size was also derived
from the lesion mask by multiplying the number of voxels with
voxel volume (1 mm3).

Voxel-Based Lesion-Symptom Mapping
(VLSM)
To visualize the lesion locations and evaluate the overlap of the
lesioned voxels across participants, MRIcron software was used.
The relationship between neuroanatomical damage and motor
recovery was evaluated using a well-known validated method:
Voxel-Based Lesion-Symptom Mapping (VLSM; Bates et al.,
2003).

The normalized images and lesion masks, along with the
measures of motor impairment, were used in the VSLM analysis,
implemented in the nonparametric mapping (NPM) software

1http://www.fil.ion.ucl.ac.uk/spm/software/spm8
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(version 12 December 2012; Chris Rorden, Columbia, SC,
USA2) included in the MRIcron software suite. In the first
analysis, in order to verify the presence of lesion changes
between the two time-points (before and after rehabilitation),
the nonparametric Liebermeister statistical analysis for binary
data was used (Rorden et al., 2007). In addition, taking into
account the non-normal distribution of the data to determine
which clinical parameter correlated with motor recovery a
nonparametric test (using the permuted Brunner-Munzel rank
order statistic) for continuous data within the NPM software was
considered (Rorden et al., 2007).

Both the Liebermeister statistical analysis and Brunner-
Munzel test were conducted assuming an a priori minimum
lesion density threshold. In fact, only voxels that were lesioned
in at least 20% of all patients were included in the analysis.
This value is based on a conventional threshold regarding the
total incidence of lesions in a voxel regardless of behavioral
performance (Rorden et al., 2007), which maximizes statistical
power, thus reducing the likelihood of error (i.e., unidentified
lesions) (Inoue et al., 2014). The color-coded map derived from
the nonparametric Brunner-Munzel test with false-discovery rate
(FDR) corrections at P ≤ 0.05 was then overlaid onto a standard
brain template3 and used to determine significant differences
between lesioned areas and motor behavioral scores.

Statistical Analysis
Statistical analyses were performed with Statistica Version 6.04.
Assumptions for normality were tested for all continuous
variables using the Kolmogorov–Smirnov test. Demographical
and clinical variables were normally distributed except for lesion
volume. A paired-sample t-test (two-sided) was used to verify
any statistical significant changes in motor scales before and after
robotic-assisted rehabilitation. A correlation between clinical
evaluations was performed using nonparametric r’ Spearman
on motor performance defined as delta scores. In fact, clinical
changes associated with different motor neurorehabilitation
approaches were calculated as the differential between T1 and T0
(∆) scores. A two-tailed alpha level of <0.05 was used to define
significance.

RESULTS

Fourteen stroke patients (age: 66.9 ± 11.3; 28% female)
completed all phases of rehabilitation protocol and were, finally,
included in the imaging analysis. The median lesion volume
related to stroke damages was of 44.6 [range: 7–146] cm3. The
average time period between baseline and re-test evaluation
was 44.1 ± 13.9 days. The hemiplegic side was properly
disturbed among patients (50% left side). After treatment the vast
majority of patients showed evident motor recovery: (A) 68.7%
improvement in the FM-UE scale (global score: from 63 ± 21 at
baseline to 92± 27 after treatment; t-value = 6.1; p< 0.0001); (B)
94.7% in the MI scale (t-value = 6.6; p < 0.0001); (C) 65, 6% in

2http://www.cabiatl.com/mricro/npm/
3http://www.bic.mni.mcgill.ca/ServicesAtlases/Colin27
4www.statsoft.com

the FIM (t-value = 6.5; p < 0.0001); (D) 174% in the Barthel-
Index (t-value = 7.6; p < 0.0001) and (E) 150% improvement
in the TCT scale (t-value = 4.4; p < 0.009). Motor recovery as
assessed by the FM-UE scale, correlated significantly with TCT
values (r = 0.86; p-level < 0.001), whilst the Barthel-Index was
related to FIM scores (r = 0.66; p-level = 0.01).

Figure 4 shows the lesion-mapping analysis. The overlapping
lesions of all strokes’ brains mainly included putamen, internal
capsule, anterior thalamic radiation, superior/posterior regions
of corona radiata (Figure 4A). Lesion mapping analysis was
first performed to evaluate the presence of lesion load between
the two time-points, without revealing any significant changes.
We then performed Voxel-based lesion symptom mapping
(VLSM) analysis with a nonparametric approach to evaluate the
relationship between each clinical scale and the lesion load and
localization. The superior region of the corona radiata, internal
capsule and putamen were significantly associated with recovery
as assessed by the FM-UE scale (Figure 4B, p-level < 0.01).
No significant relationship was detected between other clinical
scales and lesion mapping. In other words, evidence of motor
improvements as defined by MI, FIM, Barthel and TCT scales
were not related to lesion load.

DISCUSSION

Since the beginning of the 21st century, it has been assumed
that motor recovery after stroke is widely influenced by lesion
location, specially in the subcortical regions which are involved
in the primary or secondary motor systems (Shelton and Reding,
2001). Our lesion mapping study confirms that lesion load
mainly affecting the primary motor pathway was related to the
degree of upper limb motor recovery induced by an exoskeleton
robotic-assisted rehabilitation program.

It is worth noting that in the months immediately following
a stroke episode, patients can recover between 40%–70% of
initial clinical deficits (Ramsey et al., 2017). This behavioral
phenomenon is directly dependent on the functional and
structural reorganization of specific brain systems (Murphy and
Corbett, 2009), which may occur within a few millimeters of
lesion borders and may continue over a wide temporal scale
(Siegel et al., 2018). Despite the fact that part of this recovery
might be spontaneous, it has widely been demonstrated that
intensive, repetitive, variable and rewarding motor activities
improve functional outcome (Lo et al., 2010; Turner et al.,
2013). However, this kind of protocol is time-consuming for
conventional manual therapy and given the growing demand
due to new cases, alterative automated procedures are needed.
As stated by Lo and Xie (2012), robotic-assisted therapy
and, in particular, exoskeletons have the potential to provide
intensive rehabilitation consistently for a longer duration, thus
enabling more frequent treatment and potentially reducing
costs. Generally, it has been demonstrated that robot-assisted
rehabilitation approaches have a greater effect (although not
significant) on motor recovery with respect to conventional
therapy (Lo et al., 2010; Bertani et al., 2017). Exoskeleton-robot
assisted therapy would seem to increase this effect (Lo and
Xie, 2012). This kind of device can accurately control multiple
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FIGURE 4 | The figure represents voxel-level lesion-mapping analysis performed with voxel-based lesion symptom mapping (VLSM) method implemented in the
nonparametric mapping (NPM) software included into the MRIcron software (A). Overlay of FLAIR-dependent MRI lesions detected in all stroke patients (n = 14). The
color indicates the frequency of overlapping stroke-related lesions (maximal: red blobs). (B) Regression Analysis: Voxels within the superior region of the corona
radiata, internal capsule and putamen were significantly correlated with the degree of motor recovery as assessed by FM-UE scale (violet blobs; P < 0.01).

joints at the same time, thus promoting the interaction between
the paretic and unaffected upper limbs, which may ultimately
aid a patient to produce more realistic task-based exercises
(Dolce et al., 2009; Lo and Xie, 2012; Pignolo et al., 2016).
However, the neural basis of this clinical effect has been poorly
investigated.

Motor recovery in stroke patients has attracted the interest
of the neuroimaging community due to the drawbacks of the
conventional treatment characterized by simple active/passive
strengthening of the affected upper/lower extremities and
occupational activity. Generally, motor recovery is typically
associated with widespread, synchronous activity modulations in
a spatially distributed, highly integrated network encompassing
the corticospinal tract (Shelton and Reding, 2001; Lin et al.,
2009), The primary motor cortex together with the putamen
and capsula interna are all essential components of the
brain network involved in restoring of the motor routines
necessary for relearning skilled motor behavior (Doyon et al.,

2003). In a recent meta-analysis of 24 studies using fMRI
of motor tasks, Favre et al. (2014) affirmed that the activity
in ipsilateral primary motor cortex is one of the best
predictors of the good motor recovery in chronic stroke
patients. Similarly, connectivity (i.e., DTI) as well as lesion
mapping studies demonstrated that the disruption of the
capsula interna, corona radiata, globus pallidus, and putamen
predict the functional recovery (Shelton and Reding, 2001;
Rehme et al., 2011; Stinear et al., 2012; Stinear and Ward,
2013; Hannanu et al., 2017; Lee et al., 2017). The pathway
along the pedunculopontine nucleus, cerebellum, striatum and
the motor cortex contributes to motor initiation, modulation
of motor rhythm and postural muscle tone during motor
behaviors (Takakusaki, 2013). Thus, injuries to the capsula
interna, putamen and corona radiata could be considered as
a hallmark of motor recovery in stroke patients, especially in
the chronic phase (Nudo et al., 1996; Takakusaki, 2013). The
few neuroimaging (fMRI and EEG) studies on robotic-assisted
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devices have described functional compensatory responses in
the primary and secondary motor cortices as a function of
the increased motor activities related to haptic feedback and
bimanual training (Fan et al., 2016; Saleh et al., 2017; Gandolfi
et al., 2018).

We believe that this is the first neuroimaging study evaluating
how motor recovery obtained with an exoskeleton robot exploits
a specific neural substrate. Overall, our lesion map data largely
matches previous pathophysiological evidence (Shelton and
Reding, 2001; Lo et al., 2010; Turner et al., 2013). However,
in contrast to previous studies, one additional finding is worth
discussing. In fact, we found that the clinical relevance of neural
damage was better express by FM-UE scores, a scale focused on
the motor activity of upper limbs. The FM-UE is recognized as
the most sensitive clinical scale for detecting the motor recovery
of the upper limb functions and is a reliable measure of the
neural changes associated with neurorehabilitation (Lo et al.,
2010; Hannanu et al., 2017).

Two important limitations need to be discussed. First,
the lack of a useful control group for evaluating the impact
of robotic-assisted rehabilitation with respect to conventional
treatment. Although we are aware of this limitation, it
is important to bear in mind that the effectiveness of
upper-extremity rehabilitation highlighted by the ARAMIS
device with respect to conventional treatment has previously
been demonstrated (Colizzi et al., 2009; Dolce et al., 2009;
Pignolo et al., 2012). The main target of this study was
to investigate how neural damage might affect the motor
recovery induced by rehabilitation treatment primarily focused
on the employment of an exoskeleton robotic-assisted system
rather than evaluating its effectiveness with respect to other
approaches. Second, in our study we cannot disentangle the
contribution of occupational therapy with respect to robot-
assisted rehabilitation since in Italy the guidelines for stroke
unit interventions entail combining advanced robotic-assisted
rehabilitation with conventional protocol. However, previous
studies have already investigated the difference between robotic-
assisted therapies in addition to conventional therapy with
respect to conventional therapy alone. In particular, Aisen et al.
(1997) and Volpe et al. (2000) demonstrated that the outcome
of stroke patients increases as a function of intensity and
effectiveness of the motor therapy. This, thus, suggests that a
combination of rehabilitation approaches is preferable over a
single treatment.

Taking into account the fact that our data are similar to
findings reported in previous studies regarding the impact

of stroke lesions on motor recovery induced by conventional
approaches (Turner et al., 2013), all this evidence supports a
new hypothesis. In fact, regardless of the neurorehabilitation
approaches (conventional vs. robotic-assisted) brain lesions
affecting motor recovery are mainly localized in the capsula
interna, corona radiata and putamen (Shelton and Reding,
2001). Different kinds of rehabilitation approaches, instead,
could be useful to understand which neural networks,
subserving functional compensatory responses or strategies,
could be exploited to bypass the lesions (Fan et al., 2016;
Hannanu et al., 2017). Further fMRI studies investigating
the different neural pathways engaged after conventional
and robotic-assisted rehabilitation programs are needed. In
fact, it has been proposed that the compensatory overactivity
of the ipsilateral motor cortex (Favre et al., 2014) is not
sufficient to support functional recovery (Ganguly et al.,
2009). For this reason, we believe that exoskeleton-robot
assisted therapy could exploit different neural networks
subserving haptic feedback (Turner et al., 2013; Lo and Xie,
2012).

Overall, as stated by Langhorne et al. (2009), recovery from
a stroke event is a complex process that occurs through a
potentiation and extension of residual brain areas where lesion
location rather lesion volume is more effective in influencing
motor recovery. Our data could be useful for monitoring and
planning rehabilitation strategies for motor recovery in stroke
patients and to highlight the reliability of exoskeleton-robot
assisted therapy in addition to other approaches.
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