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Abstract  51 

Aneurysms are considered as a critical cardiovascular disease worldwide when they rupture. The clinical 52 

understanding of geometrical impact on the flow behaviour and biomechanics of abdominal aortic aneurysm 53 

(AAA) is progressively developing. Proximal neck angulations of AAAs are believed to influence the 54 

hemodynamic changes and wall shear stress (WSS) within AAAs. Our aim was to perform pulsatile simulations 55 

using computational fluid dynamics (CFD) for patient-specific geometry to investigate the influence of severe 56 

angular (≥ 60) neck on AAA’s hemodynamic and wall shear stress. The patient’s geometrical characteristics 57 

were obtained from a computed tomography images database of AAA patients. The AAA geometry was 58 

reconstructed using Mimics software. In computational method, blood was assumed Newtonian fluid and an 59 

inlet varying velocity waveform in a cardiac cycle was assigned. The CFD study was performed with ANSYS 60 

software. The results of flow behaviours indicated that the blood flow through severe bending of angular neck 61 

leads to high turbulence and asymmetry of flows within the aneurysm sac resulting in blood recirculation. The 62 

high wall shear stress (WSS) occurred near the AAA neck and on surface of aneurysm sac. This study explained 63 

and showed flow behaviours and WSS progression within high angular neck AAA and risk prediction of 64 

abdominal aorta rupture. We expect that the visualization of blood flow and hemodynamic changes resulted 65 

from CFD simulation could be as an extra tool to assist clinicians during a decision making when estimation the 66 

risks of interventional procedures. 67 

 68 

Keywords: Abdominal aortic aneurysm; Angulated neck; Computational fluid dynamics; Wall shear stress; 69 

Hemodynamic; Computed tomography 70 
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Abbreviations  80 

3D  Three-dimensional 81 

AAAs  Abdominal aortic aneurysms 82 

CAD  Computer-aided design 83 

CFD  Computational fluid dynamics 84 

CT  Computed tomography 85 

CVD  Cardiovascular disease  86 

DICOM   Digital imaging and communications in medicine 87 

EVAR  Endovascular aortic aneurysm repair 88 

ILT   Intraluminal thrombus 89 

MR   Magnetic resonance 90 

ROI  Region of interest 91 

STL  Stereolithography 92 

UDF  User-defined function 93 

WSS  Wall shear stress 94 

 95 

Introduction  96 

Cardiovascular disease (CVD) is one of the foremost common cause of global mortality rate [1]. In 97 

2013, a report of Global Burden of Disease stated that 17.3 million cases of death caused by CVD globally, 98 

which accounted approximately 31.5% of total deaths [1, 2]. One of most prevalent cardiovascular diseases is 99 

abdominal aortic aneurysm (AAA) [3]. Abdominal aortic aneurysm is defined as a dilatation of the artery that 100 

located below the renal arteries[4, 5], with at least a diameter of 30 mm or about 1.5 times the normal size of 101 

aorta [6]. Abdominal aortic aneurysms are often diagnosed through the presence of intraluminal thrombus 102 

deposition and are linked to the degradation of the connective tissue in the arterial wall, which made up of cell 103 

debris and fibrinous blood clots [7]. Abdominal aortic aneurysms are formed due to several mechanisms, 104 

including inflammation of immune responses and aortic wall degradation, which are affected by molecular 105 

genetics [8, 9]. During the aneurysm formation, a complex blood flow environment and altered wall shear stress 106 

distribution are induced. Moreover, AAA is considered life-threatening health condition, which can require 107 

urgent surgical intervention [7]. Continuous AAA expansion leads to the decline of aortic wall strength, in 108 

which case the wall becomes susceptible to collapse or eventual aortic rupture [10]. Current clinical 109 
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recommendations are the following; when the AAA diameters reach 55 mm in men and 50 mm in women, with 110 

a development rate of 8.0 mm/year, then surgical intervention is necessary [5, 10].  111 

Currently, AAA intervention approaches include open surgery, endovascular aneurysm repair and 112 

endovascular  aneurysm sealing and are based on the diameter size of the aneurysm sac with a follow up 113 

routines [11–15].  However, the aneurysm diameter is still a poor indicator of rupture since some reported 114 

aneurysms with larger diameter remain intact, while aneurysms of a smaller size have been reported to rupture 115 

[5, 10, 16]. Thus, AAA rupture is ranked as the 13
th

 leading cause of mortality in the US alone with 116 

approximately 15,000 patients every year, and reports of more than 8,000 cases of death in the UK [7, 17]. 117 

Furthermore, a ruptured AAA is considered a fatal surgical emergency which has a mortality rate of 90% [18].  118 

The numerous studies conducted on the prediction of rupture and its risks, have proposed several possible AAA 119 

rupture factors including asymmetry flow index, maximum aneurysm diameter, age, aortic wall stiffness, 120 

mechanical stress, aneurysm growth rate, intraluminal thrombus ratio, smoking, hypertension and high 121 

cholesterol [8, 11, 19–21]. However, morphologies such as aortic neck angulation related to adverse events and 122 

outcome after endovascular aneurysm repair (EVAR) [22] have often been overlooked. 123 

Generally, magnetic resonance (MR) and a computer tomography (CT) can be used to obtain the 124 

anatomy of cardiovascular structures [23, 24]. The resulting images of vasculature are valuable to generate 125 

numerical models which can be used to predict mechanical behavior under these conditions. Thus, 126 

Computational fluid dynamics (CFD) has been used for cardiovascular research, including flow analysis and 127 

calculation of wall shear stress [25–29]. For the study of AAAs, CFD has been implemented in the applications 128 

of idealized or patient-specific geometries to assist in predicting the rupture risks [30, 31]. Several studies 129 

suggested that a rupture site may be linked with the wall stress, itself dependent on geometric characteristics 130 

including surface curvature and the asymmetry of aneurysms [12, 32–37]. There is the potential to address the 131 

paucity of research into the influence of neck angulation on AAA disease progression and AAA risk of rupture, 132 

through the use of a numerical model. 133 

The aim of this present study was to use a three-dimensional finite volume method for CFD simulation 134 

to determine the impact of severe proximal aneurysm neck angulation on the blood flow in AAAs and wall 135 

shear stress (WSS) based on a patient-specific AAA geometry. 136 

 137 

 138 

 139 
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Materials and Methods  140 

 141 

Image acquisition 142 

The three-dimensional (3D) vasculature was based on CT images of a single patient with the AAA 143 

fully analysed. These images were acquired from radiology department under the approval of Faculty of 144 

Medicine Ethics Committee, Prince of Songkla University with number (REC.61-010-25-2). The CT images 145 

were obtained in a DICOM format by AQUILION PRIME (Toshiba, Japan) with single slices, rows and 146 

columns of 512 x 512 pixels, a slice thickness of 3 mm and mean pixel spacing of 0.669 x 0. 669. Table 1 147 

presents patient’s demographic information including aneurysm length, aneurysm diameter, infrarenal neck 148 

length and angle at the proximal neck. 149 

 150 

Three-Dimensional Model Reconstruction  151 

The Three-dimensional (3D) smoothed model was generated from DICOM files by using the 152 

commercial medical imaging software Mimics v18.0 (Materialise, Belgium). Mimics was used to convert the 153 

acquired CT images into a patient specific 3D CAD model. The region of interest (ROI) was segmented by 154 

applying grayscale-based thresholding tools. The DICOM images were cropped from the position of the infra-155 

renal aorta towards the bifurcation of common iliac arteries. The artery branches such as parietal and visceral 156 

arteries were excluded from the reconstruction to reduce the complexity of the geometry. Owen et al. showed 157 

that the error associated with the exclusion of small branches was smaller than the effect of the simple 158 

simulation set up [31]. Examples of the thresholding and segmentation processes are shown in Fig. 1(a) and 159 

1(b). Finally, the 3D smoothed geometry was generated and exported as a binary ‘STL (stereolithography)’ 160 

format as shown in Fig. 1(c). The proximal neck angulation of patient’s specific model was measured by using 161 

Mimics, with measurement provided in Table 1.  162 

 163 

Meshing  164 

The geometry was meshed by using the Octree method in ANSYS ICEM v16.2 (ANSYS Inc., USA) 165 

for tetrahedral meshing. An inflation at the wall boundary was implemented with five prism layers. The height 166 

of first layer was set to 0.1 mm, and next layers grow with a size ratio of 1.2. Quality and smoothing checks 167 

were repeatedly performed to ensure a satisfactory mesh. A grid-size independency study was performed using a 168 

±2.5% for peak velocity as the key criterion. The final selected mesh has 2,077,498 elements.  169 
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 170 

 171 

Boundary conditions and material properties  172 

A finite volume method was implemented to solve the Navier-Stokes and continuity equations of the 173 

fluid motion under transient conditions in ANSYS FLUENT v16.2 (ANSYS Inc., USA) solver. Blood flow was 174 

assumed to be homogeneous, incompressible, and blood was modelled as a Newtonian fluid. These assumptions 175 

are adequate in larger arteries with a constant dynamic viscosity and blood density of 0.0035 Pa·s and 1,060 176 

kg/m
3
, respectively [38, 39]. Furthermore, an assumption of flow in aorta with > 0.5 mm diameter as a 177 

Newtonian is acceptable since the viscosity of blood is comparatively constant at the high shear rates (100/s), 178 

and this case is typically found in abdominal aortas [40, 41]. For the fluid domain, the flow of blood in vessels 179 

and arteries are pulsatile [42]. Thus, a user-defined function (UDF) for a pulsatile velocity profile was used at 180 

the inlet for the whole cardiac pulse cycle with a velocity magnitude between 0 and 0.3 m/s as shown in Fig. 2. 181 

The inlet velocity profile was adopted from Rissland et al.[10]. For the outlet boundary, a fully developed 182 

outflow of a zero diffusion flux boundary condition was applied at the common iliac arteries [43]. A no-slip and 183 

rigid conditions for the arterial walls were assumed.  184 

 185 

Simulation setup 186 

All CFD transient simulations to solve the Navier-Stokes equations were carried out using ANSYS 187 

FLUENT v16.2 (ANSYS Inc.) under the shear stress transport k-omega (SST k-) turbulence model with a 188 

second order implicit method for transient formulations. The pressure-velocity coupling was set as SIMPLE 189 

algorithm to solve the continuity equation under 2
nd

 order upwind momentum for spatial discretization. The 190 

convergence criteria for the normalized continuity and velocity residuals were 1× 10
-5

.  A fixed time step of 191 

0.01s was used and three cardiac cycles (30.94s) =2.82s or 282 time-steps were completed for each simulation. 192 

 193 

Results 194 

The unsteady results of flow patterns (velocity contours in cross-sectional areas and streamlines) and 195 

WSS are presented at four different time points of a cardiac cycle indicated by the points in Fig. 2. These time-196 

frames are (a) peak systole t = 0.25 s, (b) early diastole t = 0.55 s, (c) mid-diastole t = 0.70 s, and (d) late 197 

diastole t = 0.94 s. Table 2 presents the comparison of peak systolic velocity, early diastolic velocity, WSS and 198 

vorticity location between our work and previous studies that were performed on patient-specific geometries for 199 
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healthy and diseased (AAA) abdominal aorta. Furthermore, additional data comparing a healthy artery and an 200 

angulated AAA is provided, along with a comparison of a laminar model and a turbulence model, and included 201 

as supplementary material. 202 

 203 

Flow patterns 204 

The velocity contours in regions of interest are presented in both horizontal and longitudinal cross-205 

sectional areas as shown in Fig. 3(a). Four horizontal cross-sectional slides (A, B, D and C) in Fig. 3(b), and one 206 

longitudinal cross-sectional slide (E) extended from upper neck region towards the distal area of the sac as in 207 

Fig. 3(c). The contours of velocity within the horizontal cross-sectional slides show that the magnitude of 208 

velocity is significantly changed over the time. The maximum velocity at the peak systole clearly seems to be 209 

higher by approximately 55% than other maximum velocities over the different time points in a cardiac cycle, 210 

while velocity flow among the diastolic stages show similarity with slightly difference of only 4%. However, at 211 

all four time-points of a cardiac cycle the maximum blood flow occurs near the inner wall of the aorta, but 212 

cross-section of slide D views maximum blood flow near both inner and outer walls with local average velocity 213 

(0.15 m/s). The flows within slides C and D tend to form a circular shape within the aortic sac that can cause a 214 

high blood recirculation while maintaining a low velocity at the center of aorta with approximately 0.04 m/s.  215 

Figure 3c emphasizes the velocity flow starting from upper the neck bending region towards the distal 216 

sac of aneurysm represented by the square box for the ROI. At a peak systolic time of 0.25 s, the velocity of 217 

flow entering the proximal neck of aneurysm towards the sac increased and led to an impingement of blood flow 218 

on the outer wall of aorta, subsequently diminishing through diastolic phase. At a full cardiac cycle of 0.94 s, 219 

high velocity flow is observed on both sides of the aneurysm sac which appears to coil up in this sectional view. 220 

The streamlines of velocity flows are presented in Fig. 4. The swirling of instantaneous velocity streamlines was 221 

acquired at different time points of a cardiac cycle as displayed in the ROI around the angular neck AAA. The 222 

recirculation blood vortexes are easily recognizable in various patterns over time.  223 

 224 

WSS distribution 225 

The WSS distribution of four different time points of a cardiac cycle configuration (peak systole, early 226 

diastole, mid diastole and late diastole) for high proximal neck angulation of AAA is depicted in Fig. 5. The 227 

WSS distributions are illustrated in three different views. View 1 and 2 show the WSS distribution at the regions 228 

of proximal aneurysm neck and view 3 illustrates the WSS distribution on the surface of aneurysm sac. We can 229 
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observe that the high WSS of 1.24 Pa occurs at the area of proximal neck due to the turbulent flow exhibited 230 

within the region of angulation. The high bending, the severe tortuosity of aortic surface and asymmetric blood 231 

flow seem to be possible indicators of WSS and aortic rupture. At the peak systole and a fully developed cardiac 232 

cycle as in Fig. 6, high WSS regions are located at the areas below the angular neck and over the aneurysm sac 233 

as indicated by the red arrows with average value of 0.94 Pa, while the locations of low WSS with the average 234 

of 0.077 Pa are indicated by the black arrows. Furthermore, the values of WSS vary between the healthy subject 235 

and AAA patients. In the AAA patients, WSS is lower than WSS in the healthy subjects as presented in Table 2.   236 

 237 

Discussion 238 

In this study, three-dimensional computational fluid dynamics simulations of a severe angulation neck 239 

of patient-specific AAA has been used to assess time-dependent hemodynamic. The three-dimensional geometry 240 

of angular neck AAA was reconstructed from computed tomography images. More specifically, the impact of 241 

high angular neck AAA on blood flow and wall shear stress (WSS) were assessed for an angle (> 60); 242 

particularly important due to the lack of studies in this area [22], where previous studies focused on smaller 243 

proximal angles (≤60) or using idealized geometries [6, 17, 22, 43, 44]. 244 

Our study demonstrated the hemodynamic changes occur more pronounce at peak systole and 245 

turbulence flow was generated at the neck throughout the aneurysm sac during a cardiac cycle. In this study, the 246 

presence of a bending angle greater than 60 caused high flow turbulence and irregularities of blood-flow 247 

streamlines. This indicates that WSS and their distribution will be altered, with potential impact on weakening 248 

of arteries wall [43, 44].  249 

The flow patterns at the systolic stage were observed to have complex and high velocity values within 250 

the proximal neck, while these maximum velocity values seemed to be decreased at the early and mid-diastole 251 

stages before it increased again at a complete cardiac cycle. As shown in Table 2, it is noted that the normal 252 

aorta model has higher peak systolic velocity than the AAA model. Vortex formation can be observed in 253 

geometries from AAA patients, whereas they cannot be observed in healthy aortas unless there is surface 254 

curvature, where only minimal recirculation may occur.  The impact of proximal angular neck on blood flow 255 

within aneurysm sac was clearly showed to form a complex recirculation and flow impingement. This impact 256 

demonstrated a clear difference between the flow in AAA with an angulated proximal neck and without an 257 

angulated proximal neck. When the proximal neck is straight, the blood flows can be observed to follow laminar 258 
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flow (i.e. not cross over streamlines) within the aneurysm sac with a very small region of recirculation [45]. It 259 

also showed that the velocity flow within the aorta was observed to have vorticity flow and recirculation 260 

particularly through the aneurysm sac and aortic bifurcation, and these findings are consistent with idealized and 261 

real geometries in prior studies [31, 43, 44, 46], but our study reveals more complex recirculation and vorticity 262 

due to highly angulated neck and complexity of patient specific AAA geometry. Furthermore, a larger diameter 263 

for ruptured AAAs was associated with greater recirculation flow whereas less recirculation was found in 264 

smaller ruptured AAAs [47].  265 

Several factors that influence the hemodynamic and the biomechanical conditions of arteries in 266 

cardiovascular system. For instance, vascular geometry, elasticity of the wall, blood viscosity and pathological 267 

conditions [48, 49]. Xenos et al.[17] conducted numerical simulations for 26 idealized geometries based on 268 

patient-specific data by using Fluid-Structure Interaction (FSI) simulations to investigate the effect of proximal 269 

necks (40.10±16.30) in AAA. Correspondingly, Drewe et al. [6] studied  similar range of neck angles in Xenos 270 

et al.[17] for idealized geometries in order to observe the stresses and hemodynamics. Both studies reported that 271 

peak WSS seems to be increased with the increase of proximal neck angles. However, the smaller angle of 272 

necks in their studies predicted peak WSS in the middle region of aneurysm sac due to the less turbulence of 273 

blood flow generated, while our findings with a larger neck showed WSS can be located more diffuse across 274 

areas such as below the proximal neck, middle of sac as well as at the lower side of the aneurysm sac wall. It has 275 

been reported that high WSS can promote endothelial injury, while low WSS can lead to inflammatory 276 

infiltration [50]. Therefore, this study has predicted a link between the behavior of blood flow and the change of 277 

WSS distribution. This correlation is consistent and demonstrates agreement with a previous study conducted by 278 

Arzani and Shadden [51].  279 

The SST k- model was used in this study [46, 52]. According to Banks et al.[53] who found that this 280 

model was preferred for CFD turbulent flow simulations in arteries due to its better performances from other 281 

turbulence models when comparing the simulation outcomes against the results of experimental data. 282 

Furthermore, this turbulent model showed a good performance for the flow at boundary layers close to the wall, 283 

without applying a function of wall enhancement [53]. Therefore, it was observed that SST k- model was the 284 

most suitable method that provides better comparisons against the experimental results [54],  it can be used for 285 

transitional flows for low Reynolds number. In addition, both laminar and turbulence models for AAA 286 

simulation show the formation of vortices within the aneurysm sac, which is similarly found in our study as 287 

presented in Table 2. 288 
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It should be noted that only one patient with a severe angular neck was studied. Following our study, 289 

we believe that it would be beneficial to increase the number of subjects to assess a wider range of proximal 290 

angular necks. However, this study demonstrates the effect of geometrical features based on realistic time-291 

varying velocity waveform, which is can be considered for personalized healthcare. It is appropriate also to 292 

mention that this study implemented outflow boundary conditions at outlets which used the same waveform at 293 

the inlet of AAA section. This assumption is not expected to alter the overall findings as regards AAA neck 294 

angle and altered hemodynamics. Furthermore, it is worthy to point out that a possible thrombus was not 295 

included in this study. The presence of intraluminal thrombus (ILT) encourages the change of geometrical 296 

features that can consequently influence the biomechanics of AAA [55]. However, ILT was not involved in a 297 

scope of our study.  298 

 299 

Conclusions  300 

To summarize this work, the simulation concluded that the tortuosity of the aortic neck angulation 301 

causes a downstream of blood flow to be a turbulent flow and leads a weakening of the aortic wall, resulting in 302 

forming locations of high WSS. Thus, this study presented a comprehensive idea on the behavior of blood flow 303 

in highly angulated abdominal aortic aneurysm necks and its influence on wall shear stress. Furthermore, we 304 

recommend that more cases of patient-specific geometries are necessary to study the wider effect of angularity 305 

of the proximal neck on blood flow and subsequent hemodynamic changes in abdominal aortic aneurysm sac 306 

and aortic bifurcation. 307 
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Table legends 

Table 1 Patient demographics and geometry dimensions. 

Table 2 Comparison between present study and previous studies in terms of laminar and turbulence models for 

healthy abdominal aorta and abdominal aortic aneurysm (AAA) geometries. 
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Figure legends 

Fig. 1 Overall geometry reconstructions process, (a) CT image for the whole aorta, (b) the thresholding mask for 

aorta in the axial, coronal and sagittal view, and (c) 3D geometry for AAA after reconstruction, inner and outer 

walls are indicated by arrows to represent both side of abdominal aorta. 

Fig. 2 Velocity waveform profile imposed at the inlet. (a) peak systole at 0.25 s; (b) early diastole 0.55 s; (c) 

mid diastole 0.70 s; and (d) late diastole 0.94 s. 

Fig. 3 Velocity contours at different horizontal cross-sectional areas for the angular neck AAA and aortic sac 

indicated by letters: (a) the four different locations in the geometry; (b) comparisons of the magnitude of the 

flow velocity at different time points in a cardiac cycle; (c) the vertical cross-sectional area of the model from 

proximal neck to lower region of sac. 

Fig. 4 Flow streamline contours at four different time points in a cardiac cycle. 

Fig. 5 WSS distribution on the angular neck and aneurysm sac regions at different time points in a cardiac cycle. 

Fig. 6 WSS distribution for two time-points (0.25 s and 0.94 s) in a cardiac cycle. The high WSS regions are 

located with red arrows with average value of 0.94 Pa, while the locations of low WSS with the average of 

0.077 Pa are indicated by the black arrows. 

 

 

 

 

 

 

 


