9,978 research outputs found

    Inflation and Reheating in Spontaneously Generated Gravity

    Full text link
    Inflation is studied in the context of induced gravity (IG) γσ2R\gamma \sigma^2 R, where RR is the Ricci scalar, σ\sigma a scalar field and γ\gamma a dimensionless constant, and diverse symmetry-breaking potentials V(σ)V(\sigma) are considered. In particular we compared the predictions for Landau-Ginzburg (LG) and Coleman-Weinberg (CW) type potentials and their possible generalizations with the most recent data. We find that large field inflation generally leads to fewer constraints on the parameters and the shape of the potential whereas small field inflation is more problematic and, if viable, implies more constraints, in particular on the parameter γ\gamma. We also examined the reheating phase and obtained an accurate analytical solution for the dynamics of inflaton and the Hubble parameter by using a multiple scale analysis (MSA). The solutions were then used to study the average expansion of the Universe, the average equation of state for the scalar field and both the perturbative and resonant decays of the inflaton field.Comment: 15 pages, 10 figures, to be published in Phys. Rev.

    Adiabatic regularization of the graviton stress-energy tensor in de Sitter space-time

    Full text link
    We study the renormalized energy-momentum tensor of gravitons in a de Sitter space-time. After canonically quantizing only the physical degrees of freedom, we adopt the standard adiabatic subtraction used for massless minimally coupled scalar fields as a regularization procedure and find that the energy density of gravitons in the E(3) invariant vacuum is proportional to H^4, where H is the Hubble parameter, but with a positive sign. According to this result the scalar expansion rate, which is gauge invariant in de Sitter space-time, is increased by the fluctuations. This implies that gravitons may then add to conformally coupled matter in driving the Starobinsky model of inflation.Comment: 5 pages, revtex, final version accepted for publication in PR

    Ultracold collisions of metastable helium atoms

    Get PDF
    We report scattering lengths for the singlet Sigma g +, triplet Sigma u + and quintet Sigma g + adiabatic molecular potentials relevant to collisions of two metastable (n=2 triplet S) helium atoms as a function of the uncertainty in these potentials. These scattering lengths are used to calculate experimentally observable scattering lengths, elastic cross sections and inelastic rates for any combination of states of the colliding atoms, at temperatures where the Wigner threshold approximation is valid.Comment: 20 pages, 8 figures, RevTeX, epsf. Small additions of tex

    Stochastic growth of quantum fluctuations during slow-roll inflation

    Full text link
    We compute the growth of the mean square of quantum fluctuations of test fields with small effective mass during a slowly changing, nearly de Sitter stage which took place in different inflationary models. We consider a minimally coupled scalar with a small mass, a modulus with an effective mass H2 \propto H^2 (with HH as the Hubble parameter) and a massless non-minimally coupled scalar in the test field approximation and compare the growth of their relative mean square with the one of gauge-invariant inflaton fluctuations. We find that in most of the single field inflationary models the mean square gauge invariant inflaton fluctuation grows {\em faster} than any test field with a non-negative effective mass. Hybrid inflationary models can be an exception: the mean square of a test field can dominate over the gauge invariant inflaton fluctuation one on suitably choosing parameters. We also compute the stochastic growth of quantum fluctuation of a second field, relaxing the assumption of its zero homogeneous value, in a generic inflationary model; as a main result, we obtain that the equation of motion of a gauge invariant variable associated, order by order, with a generic quantum scalar fluctuation during inflation can be obtained only if we use the number of e-folds as the time variable in the corresponding Langevin and Fokker-Planck equations for the stochastic approach. We employ this approach to derive some bounds in the case of a model with two massive fields.Comment: 9 pages, 4 figures. Added references, minor changes, matches the version to be published in Phys. Rev.

    Two-sided radio emission in ON231 (W Comae)

    Full text link
    Recent radio images of the BL Lac object ON231 (W Com, 1219+285) show remarkable new features in the source structure compared to those previously published. The images were obtained from observations made with the European VLBI Network plus MERLIN at 1.6 GHz and 5 GHz after the exceptional optical outburst occurred in Spring 1998. The up-to-date B band historic light curve of ON231 is also presented together with the R band luminosity evolution in the period 1994--1999. We identify the source core in the radio images with the brightest component having the flattest spectrum. A consequence of this assumption is the existence of a two--sided emission in ON231 not detected in previous VLBI images. A further new feature is a large bend in the jet at about 10 mas from the core. The emission extends for about 20 mas after the bend, which might be due to strong interaction with the environment surrounding the nucleus. We suggest some possible interpretations to relate the changes in the source structure with the optical and radio flux density variation in the frame of the unification model.Comment: 8 pages, 8 figure

    Second Order Gauge-Invariant Perturbations during Inflation

    Get PDF
    The evolution of gauge invariant second-order scalar perturbations in a general single field inflationary scenario are presented. Different second order gauge invariant expressions for the curvature are considered. We evaluate perturbatively one of these second order curvature fluctuations and a second order gauge invariant scalar field fluctuation during the slow-roll stage of a massive chaotic inflationary scenario, taking into account the deviation from a pure de Sitter evolution and considering only the contribution of super-Hubble perturbations in mode-mode coupling. The spectra resulting from their contribution to the second order quantum correlation function are nearly scale-invariant, with additional logarithmic corrections to the first order spectrum. For all scales of interest the amplitude of these spectra depend on the total number of e-folds. We find, on comparing first and second order perturbation results, an upper limit to the total number of e-folds beyond which the two orders are comparable.Comment: 17 pages, 6 figures. Final version to appear in Phys. Rev.

    Flaring gamma-ray emission from high redshift blazars

    Full text link
    High redshift blazars are among the most powerful objects in the Universe. Although they represent a significant fraction of the extragalactic hard X-ray sky, they are not commonly detected in gamma-rays. High redshift (z>2) objects represent <10 per cent of the AGN population observed by Fermi so far, and gamma-ray flaring activity from these sources is even more uncommon. The characterization of the radio-to-gamma-ray properties of high redshift blazars represent a powerful tool for the study of both the energetics of such extreme objects and the Extragalactic Background Light. We present results of a multi-band campaign on TXS 0536+145, which is the highest redshift flaring gamma-ray blazar detected so far. At the peak of the flare the source reached an apparent isotropic gamma-ray luminosity of 6.6x10^49 erg/s, which is comparable with the luminosity observed from the most powerful blazars. The physical properties derived from the multi-wavelength observations are then compared with those shown by the high redshift population. In addition preliminary results from the high redshift flaring blazar PKS 2149-306 will be discussed.Comment: 2014 Fermi Symposium proceedings - eConf C14102.
    corecore