62 research outputs found

    The 10th Biennial Hatter Cardiovascular Institute workshop: cellular protection—evaluating new directions in the setting of myocardial infarction, ischaemic stroke, and cardio-oncology

    Get PDF
    Due to its poor capacity for regeneration, the heart is particularly sensitive to the loss of contractile cardiomyocytes. The onslaught of damage caused by ischaemia and reperfusion, occurring during an acute myocardial infarction and the subsequent reperfusion therapy, can wipe out upwards of a billion cardiomyocytes. A similar program of cell death can cause the irreversible loss of neurons in ischaemic stroke. Similar pathways of lethal cell injury can contribute to other pathologies such as left ventricular dysfunction and heart failure caused by cancer therapy. Consequently, strategies designed to protect the heart from lethal cell injury have the potential to be applicable across all three pathologies. The investigators meeting at the 10th Hatter Cardiovascular Institute workshop examined the parallels between ST-segment elevation myocardial infarction (STEMI), ischaemic stroke, and other pathologies that cause the loss of cardiomyocytes including cancer therapeutic cardiotoxicity. They examined the prospects for protection by remote ischaemic conditioning (RIC) in each scenario, and evaluated impasses and novel opportunities for cellular protection, with the future landscape for RIC in the clinical setting to be determined by the outcome of the large ERIC-PPCI/CONDI2 study. It was agreed that the way forward must include measures to improve experimental methodologies, such that they better reflect the clinical scenario and to judiciously select combinations of therapies targeting specific pathways of cellular death and injury

    Meta-Analysis and Systematic Review of Neural Stem Cells therapy for experimental ischemia stroke in preclinical studies

    Get PDF
    To evaluate the preclinical studies using NSCs transplantation therapy for experimental ischemic stroke, and determine the effect size of NSCs therapy and the correlations between different clinical measures. We firstly searched literatures to identify studies of NSCs therapy in animal cerebral ischemia models, and then calculated the quality score of studies, assessed the effect size of NSCs therapy relative to behavioral and histologic endpoints by meta-analysis. A total of 37 studies and 54 independent treated interventions were used for systematic review and meta-analysis. The median quality score was 5 of 10. 36 studies (53 intervention arms) reported functional outcome, 22 studies (34 intervention arms) reported structural outcome. After adjusted by subgroup and sensitivity analysis, the mean effect sizes were improved by 1.35 for mNSS, 1.84 for rotarod test, 0.61 for cylinder test, and 0.84 for infarct volume. Furthermore, effect size had a certain interaction with clinical variables, for example early NSCs therapy etc. In this preclinical studies, we demonstrated that transplanted NSCs significantly improved outcomes (both functional and structural outcome) in ischemic stroke. It is suggested that future preclinical animal model studies of stroke should improve study quality validity and reduce potentially confounded publication bias

    Systematic review and meta-analysis of the efficacy of interleukin-1 receptor antagonist in animal models of stroke: an update

    Get PDF
    Interleukin-1 receptor antagonist (IL-1 RA) is an anti-inflammatory protein used clinically to treat rheumatoid arthritis and is considered a promising candidate therapy for stroke. Here, we sought to update the existing systematic review and meta-analysis of IL-1 RA in models of ischaemic stroke, published in 2009, to assess efficacy, the range of circumstances in which efficacy has been tested and whether the data appear to be confounded due to reported study quality and publication bias. We included 25 sources of data, 11 of which were additional to the original review. Overall, IL-1 RA reduced infarct volume by 36.2 % (95 % confidence interval 31.6–40.7, n = 76 comparisons from 1283 animals). Assessments for publication bias suggest 30 theoretically missing studies which reduce efficacy to 21.9 % (17.3–26.4). Efficacy was higher where IL-1 RA was administered directly into the ventricles rather than peripherally, and studies not reporting allocation concealment during the induction of ischaemia reported larger treatment effects. The preclinical data supporting IL-1 RA as a candidate therapy for ischaemic stroke have improved. The reporting of measures to reduce the risk of bias has improved substantially in this update, and studies now include the use of animals with relevant co-morbidities. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s12975-016-0489-z) contains supplementary material, which is available to authorized users

    Meta-analysis of variation suggests that embracing variability improves both replicability and generalizability in preclinical research

    Get PDF
    The replicability of research results has been a cause of increasing concern to the scientific community. The long-held belief that experimental standardization begets replicability has also been recently challenged, with the observation that the reduction of variability within studies can lead to idiosyncratic, lab-specific results that cannot be replicated. An alternative approach is to, instead, deliberately introduce heterogeneity, known as "heterogenization" of experimental design. Here, we explore a novel perspective in the heterogenization program in a meta-analysis of variability in observed phenotypic outcomes in both control and experimental animal models of ischemic stroke. First, by quantifying interindividual variability across control groups, we illustrate that the amount of heterogeneity in disease state (infarct volume) differs according to methodological approach, for example, in disease induction methods and disease models. We argue that such methods may improve replicability by creating diverse and representative distribution of baseline disease state in the reference group, against which treatment efficacy is assessed. Second, we illustrate how meta-analysis can be used to simultaneously assess efficacy and stability (i.e., mean effect and among-individual variability). We identify treatments that have efficacy and are generalizable to the population level (i.e., low interindividual variability), as well as those where there is high interindividual variability in response; for these, latter treatments translation to a clinical setting may require nuance. We argue that by embracing rather than seeking to minimize variability in phenotypic outcomes, we can motivate the shift toward heterogenization and improve both the replicability and generalizability of preclinical research

    Human Ischaemic Cascade Studies Using SH-SY5Y Cells: a Systematic Review and Meta-Analysis

    Get PDF
    Low translational yield for stroke may reflect the focus of discovery science on rodents rather than humans. Just how little is known about human neuronal ischaemic responses is confirmed by systematic review and meta-analysis revealing that data for the most commonly used SH-SY5Y human cells comprises only 84 papers. Oxygen-glucose deprivation, H2O2, hypoxia, glucose-deprivation and glutamate excitotoxicity yielded − 58, − 61, − 29, − 45 and − 49% injury, respectively, with a dose-response relationship found only for H2O2 injury (R2 = 29.29%, p I2 = 99.36%, df = 132, p R2 = 44.77%, p R2 = 28.64%, p R2 = 4.13%, p p 2O2 injury reported only improvement. In studies using glucose deprivation, intervention generally worsened outcome. There was insufficient data to rank individual interventions, but of the studies reporting greatest improvement (> 90% effect size), 7/13 were of herbal medicine constituents (24.85% of the intervention dataset). We conclude that surprisingly little is known of the human neuronal response to ischaemic injury, and that the large impact of methodology on outcome indicates that further model validation is required. Lack of evidence for randomisation, blinding or power analysis suggests that the intervention data is at substantial risk of bias

    Systematic Review and Meta-analysis: Important Tools in Understanding Drug Development for Stroke

    No full text
    Animal models of ischaemic stroke have become an integral part of the preclinical pipeline for identifying novel neuroprotective drug targets and drugs. As the process serves as a filter, researchers do not expect complete concordance between the experimental animal and human clinical trial data. However, the paucity of clear examples of translation of promising animal results into drugs that work in a clinical setting has raised concerns about the utility of this translational paradigm. Preclinical systematic reviews have been used in response to these concerns to identify weaknesses in animal studies and provide empirical evidence supporting improvements to the design and conduct of preclinical animal experiments. We propose that further strategic development and application of data analysis methods can help continue this process of improvement and help identify the most promising therapeutic targets and drugs. These next steps in systematic review aim to tighten the focus of preclinical research, streamline the drug development process, and minimise research waste
    • …
    corecore