272 research outputs found
Canine respiratory coronavirus employs caveolin-1-mediated pathway for internalization to HRT-18G cells
Canine respiratory coronavirus (CRCoV), identified in 2003, is a member of the Coronaviridae family. The virus is a betacoronavirus and a close relative of human coronavirus OC43 and bovine coronavirus. Here, we examined entry of CRCoV into human rectal tumor cells (HRT-18G cell line) by analyzing co-localization of single virus particles with cellular markers in the presence or absence of chemical inhibitors of pathways potentially involved in virus entry. We also targeted these pathways using siRNA. The results show that the virus hijacks caveolin-dependent endocytosis to enter cells via endocytic internalization
A Genome-Scale Metabolic Reconstruction of Mycoplasma genitalium, iPS189
With a genome size of βΌ580 kb and approximately 480 protein coding regions, Mycoplasma genitalium is one of the smallest known self-replicating organisms and, additionally, has extremely fastidious nutrient requirements. The reduced genomic content of M. genitalium has led researchers to suggest that the molecular assembly contained in this organism may be a close approximation to the minimal set of genes required for bacterial growth. Here, we introduce a systematic approach for the construction and curation of a genome-scale in silico metabolic model for M. genitalium. Key challenges included estimation of biomass composition, handling of enzymes with broad specificities, and the lack of a defined medium. Computational tools were subsequently employed to identify and resolve connectivity gaps in the model as well as growth prediction inconsistencies with gene essentiality experimental data. The curated model, M. genitalium iPS189 (262 reactions, 274 metabolites), is 87% accurate in recapitulating in vivo gene essentiality results for M. genitalium. Approaches and tools described herein provide a roadmap for the automated construction of in silico metabolic models of other organisms
Paradoxical regulation of Bcl-2 family proteins by 17Ξ²-oestradiol in human breast cancer cells MCF-7
Tumorigenesis is related to the dysregulation of cell growth or cell death pathways. Hence, elucidation of the mechanisms involved in the modulation of pro- or anti-apoptotic proteins is important in furthering understanding of breast cancer aetiology and may aid in designing prevention and treatment strategies. In the present study, we examined the role of 17Ξ²-oestradiol on the regulation of apoptosis in the breast cancer cell line MCF-7. Using multi-probe RNAase protection assays, we found changes in the mRNA levels of several Bcl-2 family proteins upon treatment of MCF-7 cells with 17Ξ²-oestradiol. Unexpectedly, we found a paradoxical effects of 17Ξ²-oestradiol on two anti-apoptotic proteins Bcl-2 and Bcl-x. Treatment with 17Ξ²-oestradiol resulted in up-regulation of Bcl-2 mRNA and protein, but down-regulated Bcl-x(L) mRNA and protein. The effect of 17Ξ²-oestradiol on Bcl-x(L) occurred at concentration-dependent fashion. The effect was specific to 17Ξ²-oestradiol since other steroid hormones exert no effect on Bcl-x(L). Tamoxifen, an anti-oestrogen, blocked the down-regulation of Bcl-x(L) by 17Ξ²-oestradiol demonstrating this effect is oestrogen receptor-dependent. We speculate that different members of the Bcl-2 family proteins may be regulated through different pathway and these pathways may be modulated by 17Ξ²-oestradiol. Β© 1999 Cancer Research Campaig
A systematic review of physiological methods in rodent pharmacological MRI studies
Rationale: Pharmacological magnetic resonance imaging (phMRI) provides an approach to study effects of drug challenges on brain processes. Elucidating mechanisms of drug action helps us to better understand the workings of neurotransmitter systems, map brain function or facilitate drug development. phMRI is increasingly used in preclinical research employing rodent models; however, data interpretation and integration are complicated by the use of different experimental approaches between laboratories. In particular, the effects of different anaesthetic regimes upon neuronal and haemodynamic processes and baseline physiology could be problematic.
Objectives: This paper investigates how differences in phMRI research methodologies are manifested and considers associated implications, placing particular emphasis on choice of anaesthetic regimes.
Methods: A systematic review of rodent phMRI studies was conducted. Factors such as those describing anaesthetic regimes (e.g. agent, dosage) and parameters relating to physiological maintenance (e.g. ventilatory gases) and MRI method were recorded.
Results: We identified 126 eligible studies and found that the volatile agents isoflurane (43.7 %) and halothane (33.3 %) were most commonly used for anaesthesia, but dosage and mixture of ventilatory gases varied substantially between laboratories. Relevant physiological parameters were usually recorded, although 32 % of studies did not provide cardiovascular measures.
Conclusions: Anaesthesia and animal preparation can influence phMRI data profoundly. The variation of anaesthetic type, dosage regime and ventilatory gases makes consolidation of research findings (e.g. within a specific neurotransmitter system) difficult. Standardisation of a small(er) number of preclinical phMRI research methodologies and/or increased consideration of approaches that do not require anaesthesia is necessary to address these challenges
Reph, a Regulator of Eph Receptor Expression in the Drosophila melanogaster Optic Lobe
Receptors of the Eph family of tyrosine kinases and their Ephrin ligands are involved in developmental processes as diverse as angiogenesis, axon guidance and cell migration. However, our understanding of the Eph signaling pathway is incomplete, and could benefit from an analysis by genetic methods. To this end, we performed a genetic modifier screen for mutations that affect Eph signaling in Drosophila melanogaster. Several dozen loci were identified on the basis of their suppression or enhancement of an eye defect induced by the ectopic expression of Ephrin during development; many of these mutant loci were found to disrupt visual system development. One modifier locus, reph (regulator of eph expression), was characterized in molecular detail and found to encode a putative nuclear protein that interacts genetically with Eph signaling pathway mutations. Reph is an autonomous regulator of Eph receptor expression, required for the graded expression of Eph protein and the establishment of an optic lobe axonal topographic map. These results reveal a novel component of the regulatory pathway controlling expression of eph and identify reph as a novel factor in the developing visual system
Anti-HIV-1 Activity of a New Scorpion Venom Peptide Derivative Kn2-7
For over 30 years, HIV/AIDS has wreaked havoc in the world. In the absence of an effective vaccine for HIV, development of new anti-HIV agents is urgently needed. We previously identified the antiviral activities of the scorpion-venom-peptide-derived mucroporin-M1 for three RNA viruses (measles viruses, SARS-CoV, and H5N1). In this investigation, a panel of scorpion venom peptides and their derivatives were designed and chosen for assessment of their anti-HIV activities. A new scorpion venom peptide derivative Kn2-7 was identified as the most potent anti-HIV-1 peptide by screening assays with an EC50 value of 2.76 Β΅g/ml (1.65 Β΅M) and showed low cytotoxicity to host cells with a selective index (SI) of 13.93. Kn2-7 could inhibit all members of a standard reference panel of HIV-1 subtype B pseudotyped virus (PV) with CCR5-tropic and CXCR4-tropic NL4-3 PV strain. Furthermore, it also inhibited a CXCR4-tropic replication-competent strain of HIV-1 subtype B virus. Binding assay of Kn2-7 to HIV-1 PV by Octet Red system suggested the anti-HIV-1 activity was correlated with a direct interaction between Kn2-7 and HIV-1 envelope. These results demonstrated that peptide Kn2-7 could inhibit HIV-1 by direct interaction with viral particle and may become a promising candidate compound for further development of microbicide against HIV-1
Middle Neolithic farming of open-air sites in SE France: new insights from archaeobotanical investigations of three wells found at Les Bagnoles (L'Isle-sur-la-Sorgue, DΓ©pt. Vaucluse, France)
Previous reviews of Middle Neolithic agricultural practice (4400β3500 cal bc) in southern France have highlighted a change in crop assemblages after 4000 cal bc, with a reduction of naked wheat and an increase of emmer and partly of einkorn. The recent investigation of three wells from the site of Les Bagnoles (4250β3800 cal bc) in the periphery of the southern RhΓ΄ne valley yielded an unprecedented amount of waterlogged uncharred and charred plant macro remains that offer new insights into crop diversity and its changes over time. The results from the wells at Les Bagnoles were compared with other dated sunken features from open-air sites (in contrast to caves and rock shelters), with the aim of identifying patterns sug-gesting changes in the crop spectra between the early (MN1) and late (MN2) Middle Neolithic phases from taphonomically comparable contexts. The results from Les Bagnoles demonstrate that oil crops and pulses are underrepresented in dry sites and that they were a significant part of Middle Neolithic agriculture. They also indicate an increase in the representation of einkorn (instead of emmer) during MN2 that is also visible in other open-air sites. The comparison of the archaeobotani-cal results with silo storage capacity values as a proxy for average production capacity per household leads us to propose a possible drop in naked wheat productivity and opens new questions in factors affecting crop choice at the beginning of the 4th millennium cal bc
Scientific, sustainability and regulatory challenges of cultured meat
Producing meat without the drawbacks of conventional animal agriculture would greatly contribute to future food and nutrition security. This Review Article covers biological, technological, regulatory and consumer acceptance challenges in this developing field of biotechnology. Cellular agriculture is an emerging branch of biotechnology that aims to address issues associated with the environmental impact, animal welfare and sustainability challenges of conventional animal farming for meat production. Cultured meat can be produced by applying current cell culture practices and biomanufacturing methods and utilizing mammalian cell lines and cell and gene therapy products to generate tissue or nutritional proteins for human consumption. However, significant improvements and modifications are needed for the process to be cost efficient and robust enough to be brought to production at scale for food supply. Here, we review the scientific and social challenges in transforming cultured meat into a viable commercial option, covering aspects from cell selection and medium optimization to biomaterials, tissue engineering, regulation and consumer acceptance
Why Functional Pre-Erythrocytic and Bloodstage Malaria Vaccines Fail: A Meta-Analysis of Fully Protective Immunizations and Novel Immunological Model
Background: Clinically protective malaria vaccines consistently fail to protect adults and children in endemic settings, and at best only partially protect infants. Methodology/Principal Findings: We identify and evaluate 1916 immunization studies between 1965-February 2010, and exclude partially or nonprotective results to find 177 completely protective immunization experiments. Detailed reexamination reveals an unexpectedly mundane basis for selective vaccine failure: live malaria parasites in the skin inhibit vaccine function. We next show published molecular and cellular data support a testable, novel model where parasite-host interactions in the skin induce malaria-specific regulatory T cells, and subvert early antigen-specific immunity to parasite-specific immunotolerance. This ensures infection and tolerance to reinfection. Exposure to Plasmodium-infected mosquito bites therefore systematically triggers immunosuppression of endemic vaccine-elicited responses. The extensive vaccine trial data solidly substantiate this model experimentally. Conclusions/Significance: We conclude skinstage-initiated immunosuppression, unassociated with bloodstage parasites, systematically blocks vaccine function in the field. Our model exposes novel molecular and procedural strategies to significantly and quickly increase protective efficacy in both pipeline and currently ineffective malaria vaccines, and forces fundamental reassessment of central precepts determining vaccine development. This has major implications fo
- β¦