165 research outputs found

    How to delineate the general profiles of functionality of citizen’s aged 65 years and old as a function of Its age

    Get PDF
    Objectives: A core set of International Classification of Functioning, Disability and Health codes was used, to ascertain the general profile of functionality as a function of biological and sociodemographic characteristics, notably the age of the citizens. Methods: Data were collected by health professionals in the participants’ houses. The factorial validity of the construct was assessed by a confirmatory factor analysis. An ordinal regression model was built to identify the general profile of functionality as a function of age. Results: It is expected that people under the age of 74 years will present no functional problems and that, after age 74, the most likely functionality problem will be a “MILD problem”. Discussion: The functional profile of each elderly is interrelated with his or her sociodemographic context as well as with the overarching biological, cultural, and environmental characteristics of society. A progressive decrease in GPF occurs with age. Conclusions: The evaluation of each person (even those with no perceived or incipient levels of functional impairment who are at risk of progressing to a more severe disability) about what are the factors that are related with this functional decline as people get older, allows identify the respective nursing interventions to be developed.This work was supported by 4IE project (0045-4IE-4-P) funded by the Interreg V-A Espanha-Portugal (POCTEP) 2014-2020 program

    Are mice good models for human neuromuscular disease? Comparing muscle excursions in walking between mice and humans

    Get PDF
    The mouse is one of the most widely used animal models to study neuromuscular diseases and test new therapeutic strategies. However, findings from successful pre-clinical studies using mouse models frequently fail to translate to humans due to various factors. Differences in muscle function between the two species could be crucial but often have been overlooked. The purpose of this study was to evaluate and compare muscle excursions in walking between mice and humans

    MSH3 polymorphisms and protein levels affect CAG repeat instability in huntington's disease mice

    Get PDF
    Expansions of trinucleotide CAG/CTG repeats in somatic tissues are thought to contribute to ongoing disease progression through an affected individual's life with Huntington's disease or myotonic dystrophy. Broad ranges of repeat instability arise between individuals with expanded repeats, suggesting the existence of modifiers of repeat instability. Mice with expanded CAG/CTG repeats show variable levels of instability depending upon mouse strain. However, to date the genetic modifiers underlying these differences have not been identified. We show that in liver and striatum the R6/1 Huntington's disease (HD) (CAG)~100 transgene, when present in a congenic C57BL/6J (B6) background, incurred expansion-biased repeat mutations, whereas the repeat was stable in a congenic BALB/cByJ (CBy) background. Reciprocal congenic mice revealed the Msh3 gene as the determinant for the differences in repeat instability. Expansion bias was observed in congenic mice homozygous for the B6 Msh3 gene on a CBy background, while the CAG tract was stabilized in congenics homozygous for the CBy Msh3 gene on a B6 background. The CAG stabilization was as dramatic as genetic deficiency of Msh2. The B6 and CBy Msh3 genes had identical promoters but differed in coding regions and showed strikingly different protein levels. B6 MSH3 variant protein is highly expressed and associated with CAG expansions, while the CBy MSH3 variant protein is expressed at barely detectable levels, associating with CAG stability. The DHFR protein, which is divergently transcribed from a promoter shared by the Msh3 gene, did not show varied levels between mouse strains. Thus, naturally occurring MSH3 protein polymorphisms are modifiers of CAG repeat instability, likely through variable MSH3 protein stability. Since evidence supports that somatic CAG instability is a modifier and predictor of disease, our data are consistent with the hypothesis that variable levels of CAG instability associated with polymorphisms of DNA repair genes may have prognostic implications for various repeat-associated diseases

    Sequential Array Cytometry: Multi-Parameter Imaging with a Single Fluorescent Channel

    Get PDF
    Heterogeneity within the human population and within diseased tissues necessitates a personalized medicine approach to diagnostics and the treatment of diseases. Functional assays at the single-cell level can contribute to uncovering heterogeneity and ultimately assist in improved treatment decisions based on the presence of outlier cells. We aim to develop a platform for high-throughput, single-cell-based assays using well-characterized hydrodynamic cell isolation arrays which allow for precise cell and fluid handling. Here, we demonstrate the ability to extract spatial and temporal information about several intracellular components using a single fluorescent channel, eliminating the problem of overlapping fluorescence emission spectra. Integrated with imaging technologies such as wide field-of-view lens-free fluorescent imaging, fiber-optic array scanning technology, and microlens arrays, use of a single fluorescent channel will reduce the cost of reagents and optical components. Specifically, we sequentially stain hydrodynamically trapped cells with three biochemical labels all sharing the same fluorescence excitation and emission spectrum. These markers allow us to analyze the amount of DNA, and compare nucleus-to-cytoplasm ratio, as well as glycosylation of surface proteins. By imaging cells in real-time we enable measurements of temporal localization of cellular components and intracellular reaction kinetics, the latter is used as a measurement of multi-drug resistance. Demonstrating the efficacy of this single-cell analysis platform is the first step in designing and implementing more complete assays, aimed toward improving diagnosis and personalized treatments to complex diseases

    The Burden of Trachoma in Ayod County of Southern Sudan

    Get PDF
    Trachoma, a neglected tropical disease, is the leading cause of infectious blindness and is targeted for global elimination by the year 2020. We conducted a survey in Ayod County of Jonglei State, Southern Sudan, to determine whether blinding trachoma was a public health problem and to plan interventions to control this disease. We found the burden of trachoma in Ayod to be one of the most severe ever documented. Not only were adults affected by the advanced manifestations of the disease as is typical for older age groups, but young children were also affected. At least one person with clinical signs of trachoma was found in nearly every household, and 1 in 3 households had a person with severe blinding trachoma. Characteristics previously identified as risk factors were ubiquitous among surveyed households, but we were unable to identify why trachoma is so severe in this location. Surgical interventions are needed urgently to improve vision and prevent irreversible blindness in children and adults. Mass antibiotic distribution may alleviate current infections and transmission of trachoma may be reduced if communities adopt the behavior of face washing and safe disposal of human waste. Increasing access to improved water sources may not only improve hygiene but also reduce the spread of guinea worm and other water-borne diseases

    Inhaled tolafentrine reverses pulmonary vascular remodeling via inhibition of smooth muscle cell migration

    Get PDF
    BACKGROUND: The aim of the study was to assess the chronic effects of combined phosphodiesterase 3/4 inhibitor tolafentrine, administered by inhalation, during monocrotaline-induced pulmonary arterial hypertension (PAH) in rats. METHODS: CD rats were given a single subcutaneous injection of monocrotaline to induce PAH. Four weeks after, rats were subjected to inhalation of tolafentrine or sham nebulization in an unrestrained, whole body aerosol exposure system. In these animals (i) the acute pulmonary vasodilatory efficacy of inhaled tolafentrine (ii) the anti-remodeling effect of long-term inhalation of tolafentrine (iii) the effects of tolafentrine on the expression profile of 96 genes encoding cell adhesion and extracellular matrix regulation were examined. In addition, the inhibitory effect of tolafentrine on ex vivo isolated pulmonary artery SMC cell migration was also investigated. RESULTS: Monocrotaline injection provoked severe PAH (right ventricular systolic pressure increased from 25.9 ± 4.0 to 68.9 ± 3.2 after 4 weeks and 74.9 ± 5.1 mmHg after 6 weeks), cardiac output depression and right heart hypertrophy. The media thickness of the pulmonary arteries and the proportion of muscularization of small precapillary resistance vessels increased dramatically, and the migratory response of ex-vivo isolated pulmonary artery smooth muscle cells (PASMC) was increased. Micro-arrays and subsequent confirmation with real time PCR demonstrated upregulation of several extracellular matrix regulation and adhesion genes, such as matrixmetalloproteases (MMP) 2, 8, 9, 10, 11, 12, 20, Icam, Itgax, Plat and serpinb2. When chronically nebulized from day 28 to 42 (12 daily aerosol maneuvers), after full establishment of severe pulmonary hypertension, tolafentrine reversed about 60% of all hemodynamic abnormalities, right heart hypertrophy and monocrotaline-induced structural lung vascular changes, including the proportion of pulmonary artery muscularization. The upregulation of extracellular matrix regulation and adhesion genes was reduced by nearly 80% by inhalation of the tolafentrine. When assessed in vitro, tolafentrine blocked the enhanced PASMC migratory response. CONCLUSION: In conclusion, we demonstrate for the first time that inhalation of combined PDE3/4 inhibitor reverses pulmonary hypertension fully developed in response to monocrotaline in rats. This "reverse-remodeling" effect includes structural changes in the lung vascular wall and key molecular pathways of matrix regulation, concomitant with 60% normalization of hemodynamics

    Talaromyces atroroseus, a new species efficiently producing industrially relevant red pigments

    Get PDF
    Some species of Talaromyces secrete large amounts of red pigments. Literature has linked this character to species such as Talaromyces purpurogenus, T. albobiverticillius, T. marneffei, and T. minioluteus often under earlier Penicillium names. Isolates identified as T. purpurogenus have been reported to be interesting industrially and they can produce extracellular enzymes and red pigments, but they can also produce mycotoxins such as rubratoxin A and B and luteoskyrin. Production of mycotoxins limits the use of isolates of a particular species in biotechnology. Talaromyces atroroseus sp. nov., described in this study, produces the azaphilone biosynthetic families mitorubrins and Monascus pigments without any production of mycotoxins. Within the red pigment producing clade, T. atroroseus resolved in a distinct clade separate from all the other species in multigene phylogenies (ITS, β-tubulin and RPB1), which confirm its unique nature. Talaromyces atroroseus resembles T. purpurogenus and T. albobiverticillius in producing red diffusible pigments, but differs from the latter two species by the production of glauconic acid, purpuride and ZG-1494α and by the dull to dark green, thick walled ellipsoidal conidia produced. The type strain of Talaromyces atroroseus is CBS 133442

    Early discontinuation of endocrine therapy for breast cancer: Who is at risk in clinical practice?

    Get PDF
    Purpose: Despite evidence supporting at least five years of endocrine therapy for early breast cancer, many women discontinue therapy early. We investigated the impact of initial therapy type and specific comorbidities on discontinuation of endocrine therapy in clinical practice. Methods We identified women in a population-based cohort with a diagnosis of early breast cancer and an incident dispensing of anastrozole, letrozole or tamoxifen from 2003-2008 (N = 1531). Pharmacy and health service data were used to determine therapy duration, treatment for pre-existing and post-initiation comorbidities (anxiety, depression, hot flashes, musculoskeletal pain, osteoporosis, vaginal atrophy), demographic and other clinical characteristics. Time to discontinuation of initial, and any, endocrine therapy was calculated. Cox regression determined the association of different characteristics on early discontinuation. Results Initial endocrine therapy continued for a median of 2.2 years and any endocrine therapy for 4.8 years. Cumulative probability of discontinuing any therapy was 17% after one year and 58% by five years. Initial tamoxifen, pre-existing musculoskeletal pain and newly-treated anxiety predicted shorter initial therapy but not discontinuation of any therapy. Early discontinuation of any therapy was associated with newly-treated hot flashes (HR = 2.1, 95%CI = 1.3-3.3), not undergoing chemotherapy (HR = 1.4, 95%CI = 1.1-1.8) and not undergoing mastectomy (HR = 1.5, 95%CI = 1.2-1.8). Conclusions Less than half of women completed five years of endocrine therapy. Women at greatest risk of stopping any therapy early were those with newly-treated hot flashes, no initial chemotherapy, or no initial mastectomy. This suboptimal use means that the reductions in recurrence demonstrated in clinical trials may not be realised in practice

    Elucidating the Mechanisms of Influenza Virus Recognition by Ncr1

    Get PDF
    Natural killer (NK) cells are innate cytotoxic lymphocytes that specialize in the defense against viral infection and oncogenic transformation. Their action is tightly regulated by signals derived from inhibitory and activating receptors; the later include proteins such as the Natural Cytotoxicity Receptors (NCRs: NKp46, NKp44 and NKp30). Among the NCRs, NKp46 is the only receptor that has a mouse orthologue named Ncr1. NKp46/Ncr1 is also a unique marker expressed on NK and on Lymphoid tissue inducer (LTI) cells and it was implicated in the control of various viral infections, cancer and diabetes. We have previously shown that human NKp46 recognizes viral hemagglutinin (HA) in a sialic acid-dependent manner and that the O-glycosylation is essential for the NKp46 binding to viral HA. Here we studied the molecular interactions between Ncr1 and influenza viruses. We show that Ncr1 recognizes influenza virus in a sialic acid dependent manner and that N-glycosylation is important for this binding. Surprisingly we demonstrate that none of the predicted N-glycosilated residues of Ncr1 are essential for its binding to influenza virus and we thus conclude that other, yet unidentified N-glycosilated residues are responsible for its recognition. We have demonstrated that N glycosylation play little role in the recognition of mouse tumor cell lines and also showed the in-vivo importance of Ncr1 in the control of influenza virus infection by infecting C57BL/6 and BALB/c mice knockout for Ncr1 with influenza

    The formation of actin waves during regeneration after axonal lesion is enhanced by BDNF

    Get PDF
    During development, axons of neurons in the mammalian central nervous system lose their ability to regenerate. To study the regeneration process, axons of mouse hippocampal neurons were partially damaged by an UVA laser dissector system. The possibility to deliver very low average power to the sample reduced the collateral thermal damage and allowed studying axonal regeneration of mouse neurons during early days in vitro. Force spectroscopy measurements were performed during and after axon ablation with a bead attached to the axonal membrane and held in an optical trap. With this approach, we quantified the adhesion of the axon to the substrate and the viscoelastic properties of the membrane during regeneration. The reorganization and regeneration of the axon was documented by long-term live imaging. Here we demonstrate that BDNF regulates neuronal adhesion and favors the formation of actin waves during regeneration after axonal lesion
    corecore