544 research outputs found
An exploratory interview study of researchers’ and technicians’ perceptions of rat tickling
This paper highlights the main themes which emerged from a study carried out with Animal Technicians and researchers to better understand:• perceptions of rat tickling• potential drivers and barriers to the uptake of ticklingin a laboratory environmentThe interviewees indicated they had positive attitudes towards rats and the idea of rat tickling with positive comments about rats’ social behaviour, their intelligence and their capacity to interact with Animal Technicians andresearchers.The participants indicated that barriers to wider uptake of rat tickling including time constraints, a lack of training in the specifics of rat tickling and how to interpret rat responses to tickling. In addition, there was mention of concerns over tickling affecting experimental integrity and the need to maintain professional detachment from rats as experimental animals
An exploratory interview study of researchers’ and technicians’ perceptions of rat tickling
This paper highlights the main themes which emerged from a study carried out with Animal Technicians and researchers to better understand:• perceptions of rat tickling• potential drivers and barriers to the uptake of ticklingin a laboratory environmentThe interviewees indicated they had positive attitudes towards rats and the idea of rat tickling with positive comments about rats’ social behaviour, their intelligence and their capacity to interact with Animal Technicians andresearchers.The participants indicated that barriers to wider uptake of rat tickling including time constraints, a lack of training in the specifics of rat tickling and how to interpret rat responses to tickling. In addition, there was mention of concerns over tickling affecting experimental integrity and the need to maintain professional detachment from rats as experimental animals
New type of microengine using internal combustion of hydrogen and oxygen
Microsystems become part of everyday life but their application is restricted
by lack of strong and fast motors (actuators) converting energy into motion.
For example, widespread internal combustion engines cannot be scaled down
because combustion reactions are quenched in a small space. Here we present an
actuator with the dimensions 100x100x5 um^3 that is using internal combustion
of hydrogen and oxygen as part of its working cycle. Water electrolysis driven
by short voltage pulses creates an extra pressure of 0.5-4 bar for a time of
100-400 us in a chamber closed by a flexible membrane. When the pulses are
switched off this pressure is released even faster allowing production of
mechanical work in short cycles. We provide arguments that this unexpectedly
fast pressure decrease is due to spontaneous combustion of the gases in the
chamber. This actuator is the first step to truly microscopic combustion
engines.Comment: Paper and Supplementary Information (to appear in Scientific Reports
Structural basis for the RING catalyzed synthesis of K63 linked ubiquitin chains
This work was supported by grants from Cancer Research UK (C434/A13067), the Wellcome Trust (098391/Z/12/Z) and Biotechnology and Biological Sciences Research Council (BB/J016004/1).The RING E3 ligase catalysed formation of lysine 63 linked ubiquitin chains by the Ube2V2–Ubc13 E2 complex is required for many important biological processes. Here we report the structure of the RING domain dimer of rat RNF4 in complex with a human Ubc13~Ub conjugate and Ube2V2. The structure has captured Ube2V2 bound to the acceptor (priming) ubiquitin with Lys63 in a position that could lead to attack on the linkage between the donor (second) ubiquitin and Ubc13 that is held in the active “folded back” conformation by the RING domain of RNF4. The interfaces identified in the structure were verified by in vitro ubiquitination assays of site directed mutants. This represents the first view of the synthesis of Lys63 linked ubiquitin chains in which both substrate ubiquitin and ubiquitin-loaded E2 are juxtaposed to allow E3 ligase mediated catalysis.PostprintPeer reviewe
Architecture of Pol II(G) and molecular mechanism of transcription regulation by Gdown1.
Tight binding of Gdown1 represses RNA polymerase II (Pol II) function in a manner that is reversed by Mediator, but the structural basis of these processes is unclear. Although Gdown1 is intrinsically disordered, its Pol II interacting domains were localized and shown to occlude transcription factor IIF (TFIIF) and transcription factor IIB (TFIIB) binding by perfect positioning on their Pol II interaction sites. Robust binding of Gdown1 to Pol II is established by cooperative interactions of a strong Pol II binding region and two weaker binding modulatory regions, thus providing a mechanism both for tight Pol II binding and transcription inhibition and for its reversal. In support of a physiological function for Gdown1 in transcription repression, Gdown1 co-localizes with Pol II in transcriptionally silent nuclei of early Drosophila embryos but re-localizes to the cytoplasm during zygotic genome activation. Our study reveals a self-inactivation through Gdown1 binding as a unique mode of repression in Pol II function
Nonlinear Supersymmetry as a Hidden Symmetry
Ver abstrac
Phenotypic and genetic analysis of cognitive performance in Major Depressive Disorder in the Generation Scotland:Scottish Family Health Study
Abstract Lower performances in cognitive ability in individuals with Major Depressive Disorder (MDD) have been observed on multiple occasions. Understanding cognitive performance in MDD could provide a wider insight in the aetiology of MDD as a whole. Using a large, well characterised cohort (N = 7012), we tested for: differences in cognitive performance by MDD status and a gene (single SNP or polygenic score) by MDD interaction effect on cognitive performance. Linear regression was used to assess the association between cognitive performance and MDD status in a case-control, single-episode–recurrent MDD and control-recurrent MDD study design. Test scores on verbal declarative memory, executive functioning, vocabulary, and processing speed were examined. Cognitive performance measures showing a significant difference between groups were subsequently analysed for genetic associations. Those with recurrent MDD have lower processing speed versus controls and single-episode MDD (β = −2.44, p = 3.6 × 10−04; β = -2.86, p = 1.8 × 10−03, respectively). There were significantly higher vocabulary scores in MDD cases versus controls (β = 0.79, p = 2.0 × 10−06), and for recurrent MDD versus controls (β = 0.95, p = 5.8 × 10−05). Observed differences could not be linked to significant single-locus associations. Polygenic scores created from a processing speed meta-analysis GWAS explained 1% of variation in processing speed performance in the single-episode versus recurrent MDD study (p = 1.7 × 10−03) and 0.5% of variation in the control versus recurrent MDD study (p = 1.6 × 10−10). Individuals with recurrent MDD showed lower processing speed and executive function while showing higher vocabulary performance. Within MDD, persons with recurrent episodes show lower processing speed and executive function scores relative to individuals experiencing a single episode
Experimental Assessment of the Role of Acetaldehyde in Alcoholic Cardiomyopathy
Alcoholism is one of the major causes of non-ischemic heart damage. The myopathic state of the heart due to alcohol consumption, namely alcoholic cardiomyopathy, is manifested by cardiac hypertrophy, compromised ventricular contractility and cardiac output. Several mechanisms have been postulated for alcoholic cardiomyopathy including oxidative damage, accumulation of triglycerides, altered fatty acid extraction, decreased myofilament Ca(2+ )sensitivity, and impaired protein synthesis. Despite intensive efforts to unveil the mechanism and ultimate toxin responsible for alcohol-induced cardiac toxicity, neither has been clarified thus far. Primary candidates for the specific toxins are ethanol, its first and major metabolic product - acetaldehyde (ACA) and fatty acid ethyl esters. Evidence from our lab suggests that ACA directly impairs cardiac function and promotes lipid peroxidation resulting in oxidative damage. The ACA-induced cardiac contractile depression may be reconciled with inhibitors of Cytochrome P-450 oxidase, xanthine oxidase and lipid peroxidation Unfortunately, the common methods to investigate the toxicity of ACA have been hampered by the fact that direct intake of ACA is toxic and unsuitable for chronic study, which is unable to provide direct evidence of direct cardiac toxicity for ACA. In order to overcome this obstacle associated with the chemical properties of ACA, our laboratory has used the chronic ethanol feeding model in transgenic mice with cardiac over-expression of alcohol dehydrogenase (ADH) and an in vitro ventricular myocyte culture model. The combination of both in vivo and in vitro approaches allows us to evaluate the role of ACA in ethanol-induced cardiac toxicity and certain cellular signaling pathways leading to alcoholic cardiomyopathy
Diverse Effects on Mitochondrial and Nuclear Functions Elicited by Drugs and Genetic Knockdowns in Bloodstream Stage Trypanosoma brucei
The parasite Trypanosoma brucei causes human African trypanosomiasis, which is fatal unless treated. Currently used drugs are toxic, difficult to administer, and often are no longer effective due to drug resistance. The search for new drugs is long and expensive, and determining which compounds are worth pursuing is a key challenge in that process. In this study we sought to determine whether different compounds elicited different responses in the mammalian-infective stage of the parasite. We also examined whether genetic knockdown of parasite molecules led to similar responses. Our results show that, depending on the treatment, the replication of the parasite genomes, proper division of the cell, and mitochondrial function can be affected. Surprisingly, these different responses were not able to predict which compounds affected the long term proliferative potential of T. brucei. We found that some of the compounds had irreversible effects on the parasites within one day, so that even cells that appeared healthy could not proliferate. We suggest that determining which compounds set the parasites on a one-way journey to death may provide a means of identifying those that could lead to drugs with high efficacy
- …