67 research outputs found

    Chromatographic Examinations of Tea's Protection Against Lipid Oxidative Modifications

    Get PDF
    Ethanol metabolism is accompanied by generation of free radicals that damage cell components, especially lipids. The present study was designed to investigate the efficacy of the preventive effect of black tea on the lipid oxidative modifications in different tissues (plasma, liver, brain, kidney, stomach, lung, intestine, and spleen) of 12-month-old rats chronically intoxicated with ethanol. Ethanol intoxication caused changes in the level/activity of antioxidants that led to the significant increase in the level of lipid oxidative modification products. Oxidative modifications were estimated by measuring lipid hydroperoxides, malondialdehyde, and 4-hydroxynonenal by high-performance liquid chromatography (HPLC) and by spectrophotometric determination of conjugated dienes. These lipid-modification marker levels were increased in almost all examined tissues (3%–71%) after ethanol intoxication. Described changes were in accordance with the liver level of the most often used marker of arachidonic acid oxidation, isoprostane (8-isoPGF2α), determined by the LC/MS system. Administration of black tea to ethanol-intoxicated rats remarkably prevents the significant increase (by about 15%–42%) in concentrations of all measured parameters regarding all examined tissues, but especially the plasma, liver, brain, stomach, and spleen. The preventive effect of black tea in the other organs (kidney, lung, intestine) caused a decrease in examined markers in a smaller degree (by about 7%–28%). To determine in the liver the major constituents of black tea mainly responsible for antioxidative action such as catechins and theaflavins, which were absorbed in organism, the present study indicates their protective effect against ethanol-induced oxidative modifications of lipids

    Epigallocatechin-3-gallate suppresses the expression of HSP70 and HSP90 and exhibits anti-tumor activity in vitro and in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epigallocatechin-3-gallate (EGCG), one of the major catechins in green tea, is a potential chemopreventive agent for various cancers. The aim of this study was to examine the effect of EGCG on the expression of heat shock proteins (HSPs) and tumor suppression.</p> <p>Methods</p> <p>Cell colony formation was evaluated by a soft agar assay. Transcriptional activity of HSP70 and HSP90 was determined by luciferase reporter assay. An EGCG-HSPs complex was prepared using EGCG attached to the cyanogen bromide (CNBr)-activated Sepharose 4B. <it>In vivo </it>effect of EGCG on tumor growth was examined in a xenograft model.</p> <p>Results</p> <p>Treatment with EGCG decreased cell proliferation and colony formation of MCF-7 human breast cancer cells. EGCG specifically inhibited the expression of HSP70 and HSP90 by inhibiting the promoter activity of HSP70 and HSP90. Pretreatment with EGCG increased the stress sensitivity of MCF-7 cells upon heat shock (44°C for 1 h) or oxidative stress (H<sub>2</sub>O<sub>2</sub>, 500 μM for 24 h). Moreover, treatment with EGCG (10 mg/kg) in a xenograft model resulted in delayed tumor incidence and reduced tumor size, as well as the inhibition of HSP70 and HSP90 expression.</p> <p>Conclusions</p> <p>Overall, these findings demonstrate that HSP70 and HSP90 are potent molecular targets of EGCG and suggest EGCG as a drug candidate for the treatment of human cancer.</p

    A novel spontaneous model of epithelial-mesenchymal transition (EMT) using a primary prostate cancer derived cell line demonstrating distinct stem-like characteristics

    Get PDF
    Cells acquire the invasive and migratory properties necessary for the invasion-metastasis cascade and the establishment of aggressive, metastatic disease by reactivating a latent embryonic programme: epithelial-to-mesenchymal transition (EMT). Herein, we report the development of a new, spontaneous model of EMT which involves four phenotypically distinct clones derived from a primary tumour-derived human prostate cancer cell line (OPCT-1), and its use to explore relationships between EMT and the generation of cancer stem cells (CSCs) in prostate cancer. Expression of epithelial (E-cadherin) and mesenchymal markers (vimentin, fibronectin) revealed that two of the four clones were incapable of spontaneously activating EMT, whereas the others contained large populations of EMT-derived, vimentin-positive cells having spindle-like morphology. One of the two EMT-positive clones exhibited aggressive and stem cell-like characteristics, whereas the other was non-aggressive and showed no stem cell phenotype. One of the two EMT-negative clones exhibited aggressive stem cell-like properties, whereas the other was the least aggressive of all clones. These findings demonstrate the existence of distinct, aggressive CSC-like populations in prostate cancer, but, importantly, that not all cells having a potential for EMT exhibit stem cell-like properties. This unique model can be used to further interrogate the biology of EMT in prostate cancer

    Electronic excitation induced structural modification of FeCo nanoparticles embedded in silica matrix

    No full text
    Electronic excitation mediated energy loss by 120 MeV Au9+ swift heavy ions (SHIs) results in significant structural modifications of FeCo nanoparticles embedded in thin SiO2 matrix. The variations in local atomic structure and particle size/shape at different irradiation fluences are probed by extended x-ray absorption fine structure spectroscopy (EXAFS) and grazing incidence small angle x-ray scattering (GISAXS). The crystallinity and ordering of the films are found to first decrease and then increase with fluence. The observed alterations in co-ordination number of Fe/Co from EXAFS are correlated primarily with particle size modifications due to a transient thermal spike generated in the embedded nanoparticles by SHIs. The role of hydrogen desorption from nanoparticles is also highlighted

    Tailoring of uniaxial magnetic anisotropy in Permalloy thin films using nanorippled Si substrates

    No full text
    In this work the investigation of in-plane uniaxial magnetic anisotropy induced by the morphology due to ion beam erosion of Si(1 0 0) has been done. Ion beam erosion at an oblique angle of incidence generates a well-ordered nanoripple structure on the Si surface and ripple propagates in a direction normal to ion beam erosion. Permalloy thin films grown on such periodic nanopatterns show a strong uniaxial magnetic anisotropy with easy axis of magnetization in a direction normal to the ripple wave vector. The strength of uniaxial magnetic anisotropy is found to be high for the low value of ripple wavelength; it is decreasing with increasing value of ripple wavelength. Similarly, the strength of uniaxial magnetic anisotropy decreases with increasing Permalloy film thickness. Grazing incidence small angle x-ray scattering data reveals an anisotropic growth of Permalloy thin films with preferential orientation of grains in the direction normal to the ripple wave vector. Permalloy thin film growth is highly conformal with the film surface replicating the substrate ripple morphology up to a film thickness of 50 nm has been observed. Correlation between observed uniaxial magnetic anisotropy to surface modification has been addressed

    Metal nanostructures on top of Alq3 thin film: a GISAXS Story

    No full text
    Poster presented at the 16th International Conference on Small-Angle Scattering, held on 13-18th September, 2015, Berlin (Germany).Tris(8-hydroxyquinolinato)aluminium (Alq3) is the active layer in most organic light emitting diodes (OLEDs), an important device as the next generation light source for illumination. Its low cost, easy fabrication and reasonable efficiency have attracted many research interests. The multilayer device structure emphasizes the significance of understanding the interfacial structure and properties. Metals (Al, Ag, et al.) are used as the metal electrical contact. Upon depositing on Alq3, metal atoms can diffuse into the organic layer, modifying both, the morphological and electronic structure, thereby affecting the final device performance. Al and Ag are known to interact with Alq3 differently as probed by different spectroscopic techniques[1–3] and theoretical method3. Nevertheless, the growth mechanism and morphology of Al and Ag on Alq3 is scarcely discussed. For this purpose, in situ grazing incident small angle X-ray scattering (GISAXS) plays a powerful role to characterize the inorganic/organic interfacial structure during the film growth process[4,5]. In this work, we have carried out an in-situ GISAXS characterization to monitor the entire process of Al and Ag metal thin film on top of Alq3 layer during the sputter depositionprocess [6,7]. Considering the different chemical reactivity of both uses metals, we have completely characterized the different growth mechanisms and final thin film structures: for Al, uniform nanopillar arrays develop; for Ag, the nanostructure morphology changes from truncated spheres to percolated layer. The results benefit the general comprehension of the development of metal/organic semiconductor interfacial structure prepared via sputtering process, which is widely used in the industry

    Enhancement in field emission current density of Ni nanoparticles embedded in thin silica matrix by swift heavy ion irradiation

    No full text
    The field emission (FE) properties of nickel nanoparticles embedded in thin silica matrix irradiated with 100 MeV Au+7 ions at various fluences are studied here. A large increase in FE current density is observed in the irradiated films as compared to their as deposited counterpart. The dependence of FE properties on irradiation fluence is correlated with surface roughness, density of states of valence band and size distribution of nanoparticles as examined with atomic force microscope, X-ray photoelectron spectroscopy, and grazing incidence small angle x-ray scattering. A current density as high as 0.48 mA/cm2 at an applied field 15 V/μm has been found for the first time for planar field emitters in the film irradiated with fluence of 5.0 × 1013 ions/cm2. This significant enhancement in the current density is attributed to an optimized size distribution along with highest surface roughness of the same. This new member of field emission family meets most of the requirements of cold cathodes for vacuum micro/nanoelectronic device

    Mitochondrial thiol modification by a targeted electrophile inhibits metabolism in breast adenocarcinoma cells by inhibiting enzyme activity and protein levels

    Get PDF
    Many cancer cells follow an aberrant metabolic program to maintain energy for rapid cell proliferation. Metabolic reprogramming often involves the upregulation of glutaminolysis to generate reducing equivalents for the electron transport chain and amino acids for protein synthesis. Critical enzymes involved in metabolism possess a reactive thiolate group, which can be modified by certain oxidants. In the current study, we show that modification of mitochondrial protein thiols by a model compound, iodobutyl triphenylphosphonium (IBTP), decreased mitochondrial metabolism and ATP in MDA-MB 231 (MB231) breast adenocarcinoma cells up to 6 days after an initial 24 h treatment. Mitochondrial thiol modification also depressed oxygen consumption rates (OCR) in a dose-dependent manner to a greater extent than a non-thiol modifying analog, suggesting that thiol reactivity is an important factor in the inhibition of cancer cell metabolism. In non-tumorigenic MCF-10A cells, IBTP also decreased OCR; however the extracellular acidification rate was significantly increased at all but the highest concentration (10 µM) of IBTP indicating that thiol modification can have significantly different effects on bioenergetics in tumorigenic versus non-tumorigenic cells. ATP and other adenonucleotide levels were also decreased by thiol modification up to 6 days post-treatment, indicating a decreased overall energetic state in MB231 cells. Cellular proliferation of MB231 cells was also inhibited up to 6 days post-treatment with little change to cell viability. Targeted metabolomic analyses revealed that thiol modification caused depletion of both Krebs cycle and glutaminolysis intermediates. Further experiments revealed that the activity of the Krebs cycle enzyme, aconitase, was attenuated in response to thiol modification. Additionally, the inhibition of glutaminolysis corresponded to decreased glutaminase C (GAC) protein levels, although other protein levels were unaffected. This study demonstrates for the first time that mitochondrial thiol modification inhibits metabolism via inhibition of both aconitase and GAC in a breast cancer cell model

    A Novel Class of Mitochondria-Targeted Soft Electrophiles Modifies Mitochondrial Proteins and Inhibits Mitochondrial Metabolism in Breast Cancer Cells through Redox Mechanisms

    No full text
    <div><p>Despite advances in screening and treatment over the past several years, breast cancer remains a leading cause of cancer-related death among women in the United States. A major goal in breast cancer treatment is to develop safe and clinically useful therapeutic agents that will prevent the recurrence of breast cancers after front-line therapeutics have failed. Ideally, these agents would have relatively low toxicity against normal cells, and will specifically inhibit the growth and proliferation of cancer cells. Our group and others have previously demonstrated that breast cancer cells exhibit increased mitochondrial oxygen consumption compared with non-tumorigenic breast epithelial cells. This suggests that it may be possible to deliver redox active compounds to the mitochondria to selectively inhibit cancer cell metabolism. To demonstrate proof-of-principle, a series of mitochondria-targeted soft electrophiles (MTSEs) has been designed which selectively accumulate within the mitochondria of highly energetic breast cancer cells and modify mitochondrial proteins. A prototype MTSE, IBTP, significantly inhibits mitochondrial oxidative phosphorylation, resulting in decreased breast cancer cell proliferation, cell attachment, and migration <i>in vitro</i>. These results suggest MTSEs may represent a novel class of anti-cancer agents that prevent cancer cell growth by modification of specific mitochondrial proteins.</p></div

    Dose-dependent modification of proteins by MTSEs of different chain length in MB231 cells.

    No full text
    <p>MB231 cells were treated with the indicated doses for 4h. At the end of treatment, cell lysates were prepared and protein adducts were visualized by Western blot analysis using an antibody directed against TPP. <b>a</b> = Vehicle; <b>b</b> = 0.5 μM; <b>c</b> = 1μM; <b>d</b> = 2μM; <b>e</b> = 5μM. IPTP = 3 carbons, IBTP = 4 carbons, IHTP = 6 carbons, IOTP = 8 carbons, IDTP = 10 carbons. The values are mean ± SE of 3–5 samples obtained from two separate experiments; *<i>p</i><0.05 compared to no treatment.</p
    corecore