6,312 research outputs found
Molecular gas and star formation towards the IR dust bubble S24 and its environs
We present a multi-wavelength analysis of the infrared dust bubble S24, and
its environs, with the aim of investigating the characteristics of the
molecular gas and the interstellar dust linked to them, and analyzing the
evolutionary status of the young stellar objects (YSOs) identified there. Using
APEX data, we mapped the molecular emission in the CO(2-1), CO(2-1),
CO(2-1), and CO(3-2) lines in a region of about 5'x 5' in size
around the bubble. The cold dust distribution was analyzed using ATLASGAL and
Herschel images. Complementary IR and radio data were also used.The molecular
gas linked to the S24 bubble, G341.220-0.213, and G341.217-0.237 has velocities
between -48.0 km sec and -40.0 km sec. The gas distribution
reveals a shell-like molecular structure of 0.8 pc in radius bordering
the bubble. A cold dust counterpart of the shell is detected in the LABOCA and
Herschel images.The presence of extended emission at 24 m and radio
continuum emission inside the bubble indicates that the bubble is a compact HII
region. Part of the molecular gas bordering S24 coincides with the extended
infrared dust cloud SDC341.194-0.221. A cold molecular clump is present at the
interface between S24 and G341.217-0.237. As regards G341.220-0.213, the
presence of an arc-like molecular structure at the northern and eastern
sections of this IR source indicates that G341.220-0.213 is interacting with
the molecular gas. Several YSO candidates are found to be linked to the IR
extended sources, thus confirming their nature as active star-forming regions.
The total gas mass in the region and the H ambient density amount to 10300
M and 5900 cm, indicating that G341.220-0.213, G341.217-0.237,
and the S24 HII region are evolving in a high density medium. A triggering star
formation scenario is also investigated.Comment: 17 pages, 16 figures. Submitted to A&A. Revised according to the
referee repor
Dissipative Dynamics of Collisionless Nonlinear Alfven Wave Trains
The nonlinear dynamics of collisionless Alfven trains, including resonant
particle effects is studied using the kinetic nonlinear Schroedinger (KNLS)
equation model. Numerical solutions of the KNLS reveal the dynamics of Alfven
waves to be sensitive to the sense of polarization as well as the angle of
propagation with respect to the ambient magnetic field. The combined effects of
both wave nonlinearity and Landau damping result in the evolutionary formation
of stationaryOA S- and arc-polarized directional and rotational
discontinuities. These waveforms are freqently observed in the interplanetary
plasma.Comment: REVTeX, 6 pages (including 5 figures). This and other papers may be
found at http://sdphpd.ucsd.edu/~medvedev/papers.htm
Controlling the exchange interaction using the spin-flip transition of antiferromagnetic spins in NiFe / -FeO
We report studies of exchange bias and coercivity in ferromagnetic
NiFe layers coupled to antiferromagnetic (AF) (0001),
(110), and (112) -FeO layers. We show that AF
spin configurations which permit spin-flop coupling give rise to a strong
uniaxial anisotropy and hence a large coercivity, and that by annealing in
magnetic fields parallel to specific directions in the AF we can control either
coercivity or exchange bias. In particular, we show for the first time that a
reversible temperature-induced spin reorientation in the AF can be used to
control the exchange interaction.Comment: 15 pages, 5 figures, submitted to Phys. Rev. Let
870 micron continuum observations of the bubble-shaped nebula Gum 31
We are presenting here a study of the cold dust in the infrared ring nebula
Gum 31. We aim at deriving the physical properties of the molecular gas and
dust associated with the nebula, and investigating its correlation with the
star formation in the region, that was probably triggered by the expansion of
the ionization front. We use 870 micron data obtained with LABOCA to map the
dust emission. The obtained LABOCA image was compared to archival IR,radio
continuum, and optical images. The 870 micron emission follows the 8 micron
(Spitzer), 250 micron, and 500 micron (Herschel) emission distributions showing
the classical morphology of a spherical shell. We use the 870 micron and 250
micron images to identify 60 dust clumps in the collected layers of molecular
gas using the Gaussclumps algorithm. The clumps have effective deconvolved
radii between 0.16 pc and 1.35 pc, masses between 70 Mo and 2800 Mo, and volume
densities between 1.1x10^3 cm^-3 and 2.04x10^5 cm^-3. The total mass of the
clumps is 37600 Mo. The dust temperature of the clumps is in the range from 21
K to 32 K, while inside the HII region reaches ~ 40 K. The clump mass
distribution is well-fitted by a power law dN/dlog(M/Mo) proportional to
M^(-alpha), with alpha=0.93+/-0.28. The slope differs from those obtained for
the stellar IMF in the solar neighborhood, suggesting that the clumps are not
direct progenitors of single stars/protostars. The mass-radius relationship for
the 41 clumps detected in the 870 microns emission shows that only 37% of them
lie in or above the high-mass star formation threshold, most of them having
candidate YSOs projected inside. A comparison of the dynamical age of the HII
region with the fragmentation time, allowed us to conclude that the collect and
collapse mechanism may be important for the star formation at the edge of Gum
31, although other processes may also be acting.Comment: 15 pages, 10 figures. Accepted for publication in A&
Electrostatic Decay of Plasma Turbulence
The study of the evolution of a suprathermal electron beam traveling through
a background plasma is relevant for the physics of solar flares and their
associated type III solar radio bursts. As they evolve guided by the coronal
magnetic field-lines, these beams generate Langmuir turbulence. The
beam-generated turbulence is in turn responsible for the emission of radio
photons at the second harmonic of the local plasma frequency, which are
observed during type III solar radio bursts. To generate the radio emission,
the beam-aligned Langmuir waves must coalesce, and therefore a process capable
of re-directioning the turbulence in an effective fashion is required.
Different theoretical models identify the electrostatic (ES) decay process L1
-> L2 + S (L: Langmuir wave; S: Ion-acoustic wave) as the re-directioning
mechanism for the L waves. Two different regimes have been proposed to play a
key role: the back-scattering and the diffusive (small angle) scattering. This
paper is a comparative analysis of the decay rate of the ES decay for each
regime, and of the different observable characteristics that are expected for
the resulting ion-acoustic waves.Comment: 14 pages, 8 Figures. AAS LaTeX Macros v5.0. To appear in The
Astrophysical Journa
Synthesis and photoemission study of as-grown superconducting MgB2 thin films
As-grown superconducting thin films of MgB2 were prepared by molecular beam
epitaxy (MBE), and studied by X-ray and ultraviolet photoelectron spectroscopy
(XPS and UPS). Only films prepared at temperatures between 150 and 320 deg.
showed superconductivity. A best TC onset of 36 K with a sharp transition width
of -1 K was obtained although the film crystallinity was poor. The in-situ
photoelectron spectra obtained on the surfaces of the MBE grown MgB2 films were
free from dirt peaks. XPS revealed that the binding energy of the Mg 2p levels
in MgB2 is close to that of metallic Mg, and the binding energy of B 1s is
close to that of transition-metal diborides. The valence UP spectra showed a
clear Fermi edge although the density of states (DOS) at EF is low and the
major components of the valence band are located between 5 and 11 eV.Comment: ISS 2001 proceedin
Partitioning Schemes and Non-Integer Box Sizes for the Box-Counting Algorithm in Multifractal Analysis
We compare different partitioning schemes for the box-counting algorithm in
the multifractal analysis by computing the singularity spectrum and the
distribution of the box probabilities. As model system we use the Anderson
model of localization in two and three dimensions. We show that a partitioning
scheme which includes unrestricted values of the box size and an average over
all box origins leads to smaller error bounds than the standard method using
only integer ratios of the linear system size and the box size which was found
by Rodriguez et al. (Eur. Phys. J. B 67, 77-82 (2009)) to yield the most
reliable results.Comment: 10 pages, 13 figure
Transformation elastodynamics and active exterior acoustic cloaking
This chapter consists of three parts. In the first part we recall the
elastodynamic equations under coordinate transformations. The idea is to use
coordinate transformations to manipulate waves propagating in an elastic
material. Then we study the effect of transformations on a mass-spring network
model. The transformed networks can be realized with "torque springs", which
are introduced here and are springs with a force proportional to the
displacement in a direction other than the direction of the spring terminals.
Possible homogenizations of the transformed networks are presented, with
potential applications to cloaking. In the second and third parts we present
cloaking methods that are based on cancelling an incident field using active
devices which are exterior to the cloaked region and that do not generate
significant fields far away from the devices. In the second part, the exterior
cloaking problem for the Laplace equation is reformulated as the problem of
polynomial approximation of analytic functions. An explicit solution is given
that allows to cloak larger objects at a fixed distance from the cloaking
device, compared to previous explicit solutions. In the third part we consider
the active exterior cloaking problem for the Helmholtz equation in 3D. Our
method uses the Green's formula and an addition theorem for spherical outgoing
waves to design devices that mimic the effect of the single and double layer
potentials in Green's formula.Comment: Submitted as a chapter for the volume "Acoustic metamaterials:
Negative refraction, imaging, lensing and cloaking", Craster and Guenneau
ed., Springe
Millikelvin magnetic relaxation measurements of alpha-Fe2O3 antiferromagnetic particles
In this paper we report magnetic relaxation data for antiferromagnetic
alpha-Fe2O3 particles of 5 nm mean diameter in the temperature range 0.1 K to
25 K. The average spin value of these particles S=124 and the uniaxial
anisotropy constant D=1.6x10^-2 K have been estimated from the experimental
values of the blocking temperature and anisotropy field. The observed plateau
in the magnetic viscosity from 3 K down to 100 mK agrees with the occurrence of
spin tunneling from the ground state Sz = S. However, the scaling M vs Tln(nu
t) is broken below 5 K, suggesting the occurrence of tunneling from excited
states below this temperature.Comment: 4 pages (two columns), 4 figure
- …