3,819 research outputs found

    AdS boundary conditions and the Topologically Massive Gravity/CFT correspondence

    Get PDF
    The AdS/CFT correspondence provides a new perspective on recurrent questions in General Relativity such as the allowed boundary conditions at infinity and the definition of gravitational conserved charges. Here we review the main insights obtained in this direction over the last decade and apply the new techniques to Topologically Massive Gravity. We show that this theory is dual to a non-unitary CFT for any value of its parameter mu and becomes a Logarithmic CFT at mu = 1.Comment: 10 pages, proceedings for XXV Max Born Symposium, talks given at Johns Hopkins workshop and Holographic Cosmology workshop at Perimeter Institute; v2: added reference

    Topological regluing of rational functions

    Full text link
    Regluing is a topological operation that helps to construct topological models for rational functions on the boundaries of certain hyperbolic components. It also has a holomorphic interpretation, with the flavor of infinite dimensional Thurston--Teichm\"uller theory. We will discuss a topological theory of regluing, and trace a direction in which a holomorphic theory can develop.Comment: 38 page

    Scattering in the vicinity of relativistic jets: a method for constraining jet parameters

    Full text link
    Relativistic jets of radio loud active galactic nuclei (AGN) produce highly directed, intense beams of radiation. A fraction of this beamed radiation scatters on the thermal plasma generally surrounding an AGN. The morphology of the scattered emission can thus provide constraints on the physical properties of the jet. We present a model to study the feasibility of constraining the parameters of a jet, especially its inclination angle and bulk Lorentz factor in this way. We apply our model to the well studied jet of M87 and the surrounding diffuse gas and find that the observational limits of the surface brightness measured in the region of the putative counterjet provide the tightest constraints on the jet parameters consistent with constraints derived by other methods. We briefly discuss the applicability of our model to other sources exhibiting relativistic motionsComment: 17 pages, 15 figures, to appear in A&A, 420, 33 (2004

    Anomalous HI kinematics in Centaurus A: evidence for jet-induced star formation

    Full text link
    We present new 21-cm HI observations performed with ATCA of the large HI filament located about 15 kpc NE from the centre of Centaurus A and discovered by Schiminovich et al.(1994). This HI cloud is situated (in projection) near the radio jet of Centaurus A, as well as near a large filament of ionised gas of high excitation and turbulent velocities and near regions with young stars. The higher velocity and spatial resolution of the new data reveals that, apart from the smooth velocity gradient corresponding to the overall rotation of the cloud around Centaurus A, HI with anomalous velocities of about 100 km/s is present at the southern tip of this cloud. This is interpreted as evidence for an ongoing interaction between the radio jet and the HI cloud. Gas stripped from the HI cloud gives rise to the large filament of ionised gas and the star formation regions that are found downstream from the location of the interaction. The implied flow velocities are very similar to the observed anomalous HI velocities. Given the amount of HI with anomalous kinematics and the current star formation rate, the efficiency of jet-induced star formation is at most of the order of a percent.Comment: Accepted for publication in A&A, 7 pages, 4 figures. The full paper with high resolution images can be downloaded from http://www.astron.nl/~morganti/Papers/cena.paper.pd

    Triggered Star Formation in a Massive Galaxy at z=3.8: 4C41.17

    Get PDF
    Spectropolarimetric observations obtained with the W. M. Keck Telescope of the z=3.8 radio galaxy 4C41.17 show that the UV continuum emission from this galaxy, which is aligned with the radio axis, is unpolarized (P[2sigma] < 2.4%). This implies that scattered AGN light, which is generally the dominant contributor to the rest-frame UV emission in z~1 radio galaxies, is unlikely to be a major component of the UV flux from 4C41.17. The spectrum shows absorption lines that are similar to those detected in the spectra of the recently discovered population of star forming galaxies at z~2-3. A galaxian outflow may contribute partially to the low ionization absorption lines; however, the high velocity wings of the high ionization lines are unlikely to be dominated by a galaxian wind since the implied outflow mass is very large. The detection of stellar absorption lines, the shape of the SiIV profile, the unpolarized continuum, the inability of any AGN-related processes to account for the UV flux, and the similarity of the UV continuum spectra of 4C41.17 and the nearby starburst region NGC 1741B1 suggest that the UV light in 4C41.17 is dominated by young stars. If so, the implied star-formation rate is roughly 140-1100Msun/yr. We discuss the possibility that star formation in 4C41.17 was triggered by the radio source. Our data are consistent with the hypothesis that 4C41.17 is undergoing its major epoch of star formation at z~4, and that by z~1 it will have evolved to have spectral and morphological properties similar to those observed in known z~1 powerful radio galaxies.Comment: 28 pages (Latex text + figures); Accepted for publication in The Astrophysical Journal (Dec 1, 1997 issue

    Potassium Uptake and Recycling to the Soil in Corn and Soybean

    Get PDF
    Considerable research has been conducted at this farm to study potassium (K) fertilization rates and placement methods on corn and soybean grain yield, K uptake, and soil-test K values. However, no research has investigated K recycling to the soil by maturing plants and crop residue until the next crop is planted. The amount and the timing of the K recycled to the soil should have a significant impact on soil-test K values, and could explain a great deal of usually very high soil-test K temporal variability. Therefore, plots of several field K trials at this farm were used to investigate these issues

    Forming Galaxies with MOND

    Get PDF
    Beginning with a simple model for the growth of structure, I consider the dissipationless evolution of a MOND-dominated region in an expanding Universe by means of a spherically symmetric N-body code. I demonstrate that the final virialized objects resemble elliptical galaxies with well-defined relationships between the mass, radius, and velocity dispersion. These calculations suggest that, in the context of MOND, massive elliptical galaxies may be formed early (z > 10) as a result of monolithic dissipationless collapse. Then I reconsider the classic argument that a galaxy of stars results from cooling and fragmentation of a gas cloud on a time scale shorter than that of dynamical collapse. Qualitatively, the results are similar to that of the traditional picture; moreover, the existence, in MOND, of a density-temperature relation for virialized, near isothermal objects as well as a mass-temperature relation implies that there is a definite limit to the mass of a gas cloud where this condition can be met-- an upper limit corresponding to that of presently observed massive galaxies.Comment: 9 pages, 9 figures, revised in response to comments of referee. Table added, extended discussion, accepted MNRA

    Helium Star/Black Hole Mergers: a New Gamma-Ray Burst Model

    Full text link
    We present a model for gamma-ray bursts (GRB's) in which a stellar mass black hole acquires a massive accretion disk by merging with the helium core of its red giant companion. The black hole enters the helium core after it, or its neutron star progenitor, first experiences a common envelope phase that carries it inwards through the hydrogen envelope. Accretion of the last several solar masses of helium occurs on a time scale of roughly a minute and provides a neutrino luminosity of approximately 10^51 - 10^52 erg/s. Neutrino annihilation, 0.01% to 0.1% efficient, along the rotational axis then gives a baryon loaded fireball of electron-positron pairs and radiation (about 1050^{50} erg total) whose beaming and relativistic interaction with circumstellar material makes the GRB (e.g., Rees & Meszaros 1992). The useful energy can be greatly increased if energy can be extracted from the rotational energy of the black hole by magnetic interaction with the disk. Such events should occur at a rate comparable to that of merging neutron stars and black hole neutron star pairs and may be responsible for long complex GRB's, but not short hard ones.Comment: 11 pages total, 2 Figures - altered and revised for ApJ letters, accepte

    Fe K\alpha emission from photoionized slabs: the impact of the iron abundance

    Full text link
    Iron K\alpha emission from photoionized and optically thick material is observed in a variety of astrophysical environments including X-ray binaries, active galactic nuclei, and possibly gamma-ray bursts. This paper presents calculations showing how the equivalent width (EW) of the Fe K line depends on the iron abundance of the illuminated gas and its ionization state -- two variables subject to significant cosmic scatter. Reflection spectra from a constant density slab which is illuminated with a power-law spectrum with photon-index \Gamma are computed using the code of Ross & Fabian. When the Fe K EW is measured from the reflection spectra alone, we find that it can reach values greater than 6 keV if the Fe abundance is about 10 times solar and the illuminated gas is neutral. EWs of about 1 keV are obtained when the gas is ionized. In contrast, when the EW is measured from the incident+reflected spectrum, the largest EWs are ~800 keV and are found when the gas is ionized. When \Gamma is increased, the Fe K line generally weakens, but significant emission can persist to larger ionization parameters. The iron abundance has its greatest impact on the EW when it is less than 5 times solar. When the abundance is further increased, the line strengthens only marginally. Therefore, we conclude that Fe K lines with EWs much greater than 800 eV are unlikely to be produced by gas with a supersolar Fe abundance. These results should be useful in interpreting Fe K emission whenever it arises from optically thick fluorescence.Comment: 5 pages, 5 figures, accepted by MNRAS Letter

    Yet Another Model of Gamma-Ray Bursts

    Get PDF
    Sari and Piran have demonstrated that the time structure of gamma-ray bursts must reflect the time structure of their energy release. A model which satisfies this condition uses the electrodynamic emission of energy by the magnetized rotating ring of dense matter left by neutron star coalescence; GRB are essentially fast, high field, differentially rotating pulsars. The energy densities are large enough that the power appears as an outflowing equilibrium pair plasma, which produces the burst by baryon entrainment and subsequent internal shocks. I estimate the magnetic field and characteristic time scale for its rearrangement, which determines the observed time structure of the burst. There may be quasi-periodic oscillations at the rotational frequencies, which are predicted to range up to 5770 Hz (in a local frame). This model is one of a general class of electrodynamic accretion models which includes the Blandford and Lovelace model of AGN, and which can also be applied to black hole X-ray sources of stellar mass. The apparent efficiency of nonthermal particle acceleration is predicted to be 10--50%, but higher values are possible if the underlying accretion flow is super-Eddington. Applications to high energy gamma-ray observations of AGN are briefly discussed.Comment: 21pp, latex, uses aaspp4.st
    • …
    corecore