893 research outputs found

    A Triangular Tessellation Scheme for the Adsorption Free Energy at the Liquid-Liquid Interface: Towards Non-Convex Patterned Colloids

    Full text link
    We introduce a new numerical technique, namely triangular tessellation, to calculate the free energy associated with the adsorption of a colloidal particle at a flat interface. The theory and numerical scheme presented here are sufficiently general to handle non-convex patchy colloids with arbitrary surface patterns characterized by a wetting angle, e.g., amphiphilicity. We ignore interfacial deformation due to capillary, electrostatic, or gravitational forces, but the method can be extended to take such effects into account. It is verified that the numerical method presented is accurate and sufficiently stable to be applied to more general situations than presented in this paper. The merits of the tessellation method prove to outweigh those of traditionally used semi-analytic approaches, especially when it comes to generality and applicability.Comment: 21 pages, 11 figures, 0 table

    Role of Medium- and Short-Chain L-3-Hydroxyacyl-CoA Dehydrogenase in the Regulation of Body Weight and Thermogenesis

    Get PDF
    Dysregulation of fatty acid oxidation plays a pivotal role in the pathophysiology of obesity and insulin resistance. Medium- and short-chain-3-hydroxyacyl-coenzyme A (CoA) dehydrogenase (SCHAD) (gene name, hadh) catalyze the third reaction of the mitochondrial β-oxidation cascade, the oxidation of 3-hydroxyacyl-CoA to 3-ketoacyl-CoA, for medium- and short-chain fatty acids. We identified hadh as a putative obesity gene by comparison of two genome-wide scans, a quantitative trait locus analysis previously performed in the polygenic obese New Zealand obese mouse and an earlier described small interfering RNA-mediated mutagenesis in Caenorhabditis elegans. In the present study, we show that mice lacking SCHAD (hadh(−/−)) displayed a lower body weight and a reduced fat mass in comparison with hadh(+/+) mice under high-fat diet conditions, presumably due to an impaired fuel efficiency, the loss of acylcarnitines via the urine, and increased body temperature. Food intake, total energy expenditure, and locomotor activity were not altered in knockout mice. Hadh(−/−) mice exhibited normal fat tolerance at 20 C. However, during cold exposure, knockout mice were unable to clear triglycerides from the plasma and to maintain their normal body temperature, indicating that SCHAD plays an important role in adaptive thermogenesis. Blood glucose concentrations in the fasted and postprandial state were significantly lower in hadh(−/−) mice, whereas insulin levels were elevated. Accordingly, insulin secretion in response to glucose and glucose plus palmitate was elevated in isolated islets of knockout mice. Therefore, our data indicate that SCHAD is involved in thermogenesis, in the maintenance of body weight, and in the regulation of nutrient-stimulated insulin secretion

    Tracing plant source water dynamics during drought by continuous transpiration measurements : An in-situ stable isotope approach

    Get PDF
    Publisher Copyright: © 2022 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.The isotopic composition of xylem water (δX) is of considerable interest for plant source water studies. In-situ monitored isotopic composition of transpired water (δT) could provide a nondestructive proxy for δX-values. Using flow-through leaf chambers, we monitored 2-hourly δT-dynamics in two tropical plant species, one canopy-forming tree and one understory herbaceous species. In an enclosed rainforest (Biosphere 2), we observed δT-dynamics in response to an experimental severe drought, followed by a 2H deep-water pulse applied belowground before starting regular rain. We also sampled branches to obtain δX-values from cryogenic vacuum extraction (CVE). Daily flux-weighted δ18OT-values were a good proxy for δ18OX-values under well-watered and drought conditions that matched the rainforest's water source. Transpiration-derived δ18OX-values were mostly lower than CVE-derived values. Transpiration-derived δ2HX-values were relatively high compared to source water and consistently higher than CVE-derived values during drought. Tracing the 2H deep-water pulse in real-time showed distinct water uptake and transport responses: a fast and strong contribution of deep water to canopy tree transpiration contrasting with a slow and limited contribution to understory species transpiration. Thus, the in-situ transpiration method is a promising tool to capture rapid dynamics in plant water uptake and use by both woody and nonwoody species.Peer reviewe

    Epidemic space

    Get PDF
    The aim of this article is to highlight the importance of 'spatiality' in understanding the materialization of risk society and cultivation of risk sensibilities. More specifically it provides a cultural analysis of pathogen virulence (as a social phenomenon) by means of tracing and mapping the spatial flows that operate in the uncharted zones between the microphysics of infection and the macrophysics of epidemics. It will be argued that epidemic space consists of three types of forces: the vector, the index and the vortex. It will draw on Latour's Actor Network Theory to argue that epidemic space is geared towards instability when the vortex (of expanding associations and concerns) displaces the index (of finding a single cause)

    Chiral monoterpenes reveal forest emission mechanisms and drought responses

    Get PDF
    Monoterpenes (C10H16) are emitted in large quantities by vegetation to the atmosphere (>100 TgC year−1), where they readily react with hydroxyl radicals and ozone to form new particles and, hence, clouds, affecting the Earth’s radiative budget and, thereby, climate change1,2,3. Although most monoterpenes exist in two chiral mirror-image forms termed enantiomers, these (+) and (−) forms are rarely distinguished in measurement or modelling studies4,5,6. Therefore, the individual formation pathways of monoterpene enantiomers in plants and their ecological functions are poorly understood. Here we present enantiomerically separated atmospheric monoterpene and isoprene data from an enclosed tropical rainforest ecosystem in the absence of ultraviolet light and atmospheric oxidation chemistry, during a four-month controlled drought and rewetting experiment7. Surprisingly, the emitted enantiomers showed distinct diel emission peaks, which responded differently to progressive drying. Isotopic labelling established that vegetation emitted mainly de novo-synthesized (−)-α-pinene, whereas (+)-α-pinene was emitted from storage pools. As drought progressed, the source of (−)-α-pinene emissions shifted to storage pools, favouring cloud formation. Pre-drought mixing ratios of both α-pinene enantiomers correlated better with other monoterpenes than with each other, indicating different enzymatic controls. These results show that enantiomeric distribution is key to understanding the underlying processes driving monoterpene emissions from forest ecosystems and predicting atmospheric feedbacks in response to climate change

    Safe use of proton pump inhibitors in patients with cirrhosis

    Get PDF
    Aims: Proton pump inhibitors (PPIs) belong to the most frequently used drugs, also in patients with cirrhosis. PPIs are extensively metabolized by the liver, but practice guidance on prescribing in cirrhosis is lacking. We aim to develop practical guidance on the safe use of PPIs in patients with cirrhosis. Methods: A systematic literature search identified studies on the safety (i.e. adverse events) and pharmacokinetics of PPIs in cirrhotic patients. This evidence and data from the product information was reviewed by an expert panel who classified drugs as safe; no additional risks known; additional risks known; unsafe; or unknown. Guidance was aimed at the oral use of PPIs and categorized by the severity of cirrhosis, using the Child–Turcotte–Pugh (CTP) classification. Results: A total of 69 studies were included. Esomeprazole, omeprazole and rabeprazole were classified as having ‘no additional risks known’. A reduction in maximum dose of omeprazole and rabeprazole is recommended for CTP A and B patients. For patients with CTP C cirrhosis, the only PPI advised is esomeprazole at a maximum dosage of 20 mg per day. Pantoprazole and lansoprazole were classified as unsafe because of 4- to 8-fold increased exposure. The use of PPIs in cirrhotic patients has been associated with the development of infections and hepatic encephalopathy and should be carefully considered. Conclusions: We suggest using esomeprazole, omeprazole or rabeprazole in patients with CTP A or B cirrhosis and only esomeprazole in patients with CTP C. Pharmacokinetic changes are also important to consider when prescribing PPIs to vulnerable, cirrhotic patients

    Evaluation of a system for sorbent-assisted peritoneal dialysis in a uremic pig model

    Get PDF
    A system for sorbent-assisted peritoneal dialysis (SAPD) has been developed that continuously recirculates dialysate via a tidal mode using a single-lumen peritoneal catheter with the regeneration of spent dialysate by means of sorbents. SAPD treatment may improve plasma clearance by the maintenance of a high plasma-to-dialysate concentration gradient and by increasing the mass transfer area coefficient (MTAC) of solutes. The system is designed for daily 8-hr treatment (12 kg, nighttime system). A wearable system (2.3 kg, daytime system) may further enhance the clearance of phosphate and organic waste solutes during the day. Uremic pigs (n = 3) were treated with the day- (n = 3) and nighttime system (n = 15) for 4-8 hr per treatment. Plasma clearance (Cl), MTAC, and total mass transport (MT) of urea, creatinine, phosphate, and potassium were compared with a static dwell (n = 28). Cl, MTAC, and MT of urea, creatinine, phosphate, and potassium were low in the pig as compared to humans due to the pig's low peritoneal transport status and could be enhanced only to a limited extent by SAPD treatment compared with a static dwell (nighttime system: Cl urea: ×1.5 (p = .029), Cl creatinine: ×1.7 (p = .054), Cl phosphate: ×1.5 (p = .158), Cl potassium: ×1.6 (p = .011); daytime system: Cl creatinine: ×2.7 (p = .040), Cl phosphate: ×2.2 (p = .039)). Sorbent-assisted peritoneal dialysis treatment in a uremic pig model is safe and enhances small solute clearance as compared to a static dwell. Future studies in humans or animal species with higher peritoneal transport should elucidate whether our SAPD system enhances clearance to a clinically relevant extent as compared to conventional PD
    • …
    corecore