328 research outputs found

    Heterozygous Mutations of FREM1 Are Associated with an Increased Risk of Isolated Metopic Craniosynostosis in Humans and Mice

    Get PDF
    The premature fusion of the paired frontal bones results in metopic craniosynostosis (MC) and gives rise to the clinical phenotype of trigonocephaly. Deletions of chromosome 9p22.3 are well described as a cause of MC with variably penetrant midface hypoplasia. In order to identify the gene responsible for the trigonocephaly component of the 9p22.3 syndrome, a cohort of 109 patients were assessed by high-resolution arrays and MLPA for copy number variations (CNVs) involving 9p22. Five CNVs involving FREM1, all of which were de novo variants, were identified by array-based analyses. The remaining 104 patients with MC were then subjected to targeted FREM1 gene re-sequencing, which identified 3 further mutant alleles, one of which was de novo. Consistent with a pathogenic role, mouse Frem1 mRNA and protein expression was demonstrated in the metopic suture as well as in the pericranium and dura mater. Micro-computed tomography based analyses of the mouse posterior frontal (PF) suture, the human metopic suture equivalent, revealed advanced fusion in all mice homozygous for either of two different Frem1 mutant alleles, while heterozygotes exhibited variably penetrant PF suture anomalies. Gene dosage-related penetrance of midfacial hypoplasia was also evident in the Frem1 mutants. These data suggest that CNVs and mutations involving FREM1 can be identified in a significant percentage of people with MC with or without midface hypoplasia. Furthermore, we present Frem1 mutant mice as the first bona fide mouse model of human metopic craniosynostosis and a new model for midfacial hypoplasia

    CTCF cis-Regulates Trinucleotide Repeat Instability in an Epigenetic Manner: A Novel Basis for Mutational Hot Spot Determination

    Get PDF
    At least 25 inherited disorders in humans result from microsatellite repeat expansion. Dramatic variation in repeat instability occurs at different disease loci and between different tissues; however, cis-elements and trans-factors regulating the instability process remain undefined. Genomic fragments from the human spinocerebellar ataxia type 7 (SCA7) locus, containing a highly unstable CAG tract, were previously introduced into mice to localize cis-acting “instability elements,” and revealed that genomic context is required for repeat instability. The critical instability-inducing region contained binding sites for CTCF—a regulatory factor implicated in genomic imprinting, chromatin remodeling, and DNA conformation change. To evaluate the role of CTCF in repeat instability, we derived transgenic mice carrying SCA7 genomic fragments with CTCF binding-site mutations. We found that CTCF binding-site mutation promotes triplet repeat instability both in the germ line and in somatic tissues, and that CpG methylation of CTCF binding sites can further destabilize triplet repeat expansions. As CTCF binding sites are associated with a number of highly unstable repeat loci, our findings suggest a novel basis for demarcation and regulation of mutational hot spots and implicate CTCF in the modulation of genetic repeat instability

    SOX9 Governs Differentiation Stage-Specific Gene Expression in Growth Plate Chondrocytes via Direct Concomitant Transactivation and Repression

    Get PDF
    Cartilage and endochondral bone development require SOX9 activity to regulate chondrogenesis, chondrocyte proliferation, and transition to a non-mitotic hypertrophic state. The restricted and reciprocal expression of the collagen X gene, Col10a1, in hypertrophic chondrocytes and Sox9 in immature chondrocytes epitomise the precise spatiotemporal control of gene expression as chondrocytes progress through phases of differentiation, but how this is achieved is not clear. Here, we have identified a regulatory element upstream of Col10a1 that enhances its expression in hypertrophic chondrocytes in vivo. In immature chondrocytes, where Col10a1 is not expressed, SOX9 interacts with a conserved sequence within this element that is analogous to that within the intronic enhancer of the collagen II gene Col2a1, the known transactivation target of SOX9. By analysing a series of Col10a1 reporter genes in transgenic mice, we show that the SOX9 binding consensus in this element is required to repress expression of the transgene in non-hypertrophic chondrocytes. Forced ectopic Sox9 expression in hypertrophic chondrocytes in vitro and in mice resulted in down-regulation of Col10a1. Mutation of a binding consensus motif for GLI transcription factors, which are the effectors of Indian hedgehog signaling, close to the SOX9 site in the Col10a1 regulatory element, also derepressed transgene expression in non-hypertrophic chondrocytes. GLI2 and GLI3 bound to the Col10a1 regulatory element but not to the enhancer of Col2a1. In addition to Col10a1, paired SOX9–GLI binding motifs are present in the conserved non-coding regions of several genes that are preferentially expressed in hypertrophic chondrocytes and the occurrence of pairing is unlikely to be by chance. We propose a regulatory paradigm whereby direct concomitant positive and negative transcriptional control by SOX9 ensures differentiation phase-specific gene expression in chondrocytes. Discrimination between these opposing modes of transcriptional control by SOX9 may be mediated by cooperation with different partners such as GLI factors

    A Single cis Element Maintains Repression of the Key Developmental Regulator Gata2

    Get PDF
    In development, lineage-restricted transcription factors simultaneously promote differentiation while repressing alternative fates. Molecular dissection of this process has been challenging as transcription factor loci are regulated by many trans-acting factors functioning through dispersed cis elements. It is not understood whether these elements function collectively to confer transcriptional regulation, or individually to control specific aspects of activation or repression, such as initiation versus maintenance. Here, we have analyzed cis element regulation of the critical hematopoietic factor Gata2, which is expressed in early precursors and repressed as GATA-1 levels rise during terminal differentiation. We engineered mice lacking a single cis element −1.8 kb upstream of the Gata2 transcriptional start site. Although Gata2 is normally repressed in late-stage erythroblasts, the −1.8 kb mutation unexpectedly resulted in reactivated Gata2 transcription, blocked differentiation, and an aberrant lineage-specific gene expression pattern. Our findings demonstrate that the −1.8 kb site selectively maintains repression, confers a specific histone modification pattern and expels RNA Polymerase II from the locus. These studies reveal how an individual cis element establishes a normal developmental program via regulating specific steps in the mechanism by which a critical transcription factor is repressed

    The developmental regulator Pax6 is essential for maintenance of islet cell function in the adult mouse pancreas

    Get PDF
    The transcription factor Pax6 is a developmental regulator with a crucial role in development of the eye, brain, and olfactory system. Pax6 is also required for correct development of the endocrine pancreas and specification of hormone producing endocrine cell types. Glucagon-producing cells are almost completely lost in Pax6-null embryos, and insulin-expressing beta and somatostatin-expressing delta cells are reduced. While the developmental role of Pax6 is well-established, investigation of a further role for Pax6 in the maintenance of adult pancreatic function is normally precluded due to neonatal lethality of Pax6-null mice. Here a tamoxifen-inducible ubiquitous Cre transgene was used to inactivate Pax6 at 6 months of age in a conditional mouse model to assess the effect of losing Pax6 function in adulthood. The effect on glucose homeostasis and the expression of key islet cell markers was measured. Homozygous Pax6 deletion mice, but not controls, presented with all the symptoms of classical diabetes leading to severe weight loss requiring termination of the experiment five weeks after first tamoxifen administration. Immunohistochemical analysis of the pancreata revealed almost complete loss of Pax6 and much reduced expression of insulin, glucagon, and somatostatin. Several other markers of islet cell function were also affected. Notably, strong upregulation in the number of ghrelin-expressing endocrine cells was observed. These findings demonstrate that Pax6 is essential for adult maintenance of glucose homeostasis and function of the endocrine pancreas

    EPHA2 Is Associated with Age-Related Cortical Cataract in Mice and Humans

    Get PDF
    Age-related cataract is a major cause of blindness worldwide, and cortical cataract is the second most prevalent type of age-related cataract. Although a significant fraction of age-related cataract is heritable, the genetic basis remains to be elucidated. We report that homozygous deletion of Epha2 in two independent strains of mice developed progressive cortical cataract. Retroillumination revealed development of cortical vacuoles at one month of age; visible cataract appeared around three months, which progressed to mature cataract by six months. EPHA2 protein expression in the lens is spatially and temporally regulated. It is low in anterior epithelial cells, upregulated as the cells enter differentiation at the equator, strongly expressed in the cortical fiber cells, but absent in the nuclei. Deletion of Epha2 caused a significant increase in the expression of HSP25 (murine homologue of human HSP27) before the onset of cataract. The overexpressed HSP25 was in an underphosphorylated form, indicating excessive cellular stress and protein misfolding. The orthologous human EPHA2 gene on chromosome 1p36 was tested in three independent worldwide Caucasian populations for allelic association with cortical cataract. Common variants in EPHA2 were found that showed significant association with cortical cataract, and rs6678616 was the most significant in meta-analyses. In addition, we sequenced exons of EPHA2 in linked families and identified a new missense mutation, Arg721Gln, in the protein kinase domain that significantly alters EPHA2 functions in cellular and biochemical assays. Thus, converging evidence from humans and mice suggests that EPHA2 is important in maintaining lens clarity with age

    Renal malformations associated with mutations of developmental genes: messages from the clinic

    Get PDF
    Renal tract malformations (RTMs) account for about 40% of children with end-stage renal failure. RTMs can be caused by mutations of genes normally active in the developing kidney and lower renal tract. Moreover, some RTMs occur in the context of multi-organ malformation syndromes. For these reasons, and because genetic testing is becoming more widely available, pediatric nephrologists should work closely with clinical geneticists to make genetic diagnoses in children with RTMs, followed by appropriate family counseling. Here we highlight families with renal cysts and diabetes, renal coloboma and Fraser syndromes, and a child with microdeletion of chromosome 19q who had a rare combination of malformations. Such diagnoses provide families with often long-sought answers to the question “why was our child born with kidney disease”. Precise genetic diagnoses will also help to define cohorts of children with RTMs for long-term clinical outcome studies

    Effects of Aberrant Pax6 Gene Dosage on Mouse Corneal Pathophysiology and Corneal Epithelial Homeostasis

    Get PDF
    Background: Altered dosage of the transcription factor PAX6 causes multiple human eye pathophysiologies. PAX6(+/-) heterozygotes suffer from aniridia and aniridia-related keratopathy (ARK), a corneal deterioration that probably involves a limbal epithelial stem cell (LESC) deficiency. Heterozygous Pax6(+/Sey-Neu) (Pax6(+/-)) mice recapitulate the human disease and are a good model of ARK. Corneal pathologies also occur in other mouse Pax6 mutants and in PAX77(Tg/-) transgenics, which over-express Pax6 and model human PAX6 duplication. Methodology/Principal Findings: We used electron microscopy to investigate ocular defects in Pax6(+/-) heterozygotes (low Pax6 levels) and PAX77(Tg/-) transgenics (high Pax6 levels). As well as the well-documented epithelial defects, aberrant Pax6 dosage had profound effects on the corneal stroma and endothelium in both genotypes, including cellular vacuolation, similar to that reported for human macular corneal dystrophy. We used mosaic expression of an X-linked LacZ transgene in X-inactivation mosaic female (XLacZ(Tg/-)) mice to investigate corneal epithelial maintenance by LESC clones in Pax6(+/-) and PAX77(Tg/-) mosaic mice. PAX77(Tg/-) mosaics, over-expressing Pax6, produced normal corneal epithelial radial striped patterns (despite other corneal defects), suggesting that centripetal cell movement was unaffected. Moderately disrupted patterns in Pax6(+/-) mosaics were corrected by introducing the PAX77 transgene (in Pax6(+/-), PAX77(Tg/-) mosaics). Pax6(Leca4/+), XLacZ(Tg/-) mosaic mice (heterozygous for the Pax6(Leca4) missense mutation) showed more severely disrupted mosaic patterns. Corrected corneal epithelial stripe numbers (an indirect estimate of active LESC clone numbers) declined with age (between 15 and 30 weeks) in wild-type XLacZ(Tg/-) mosaics. In contrast, corrected stripe numbers were already low at 15 weeks in Pax6(+/-) and PAX77(Tg/-) mosaic corneas, suggesting Pax6 under-and over-expression both affect LESC clones. Conclusions/Significance: Pax6(+/-) and PAX77(Tg/-) genotypes have only relatively minor effects on LESC clone numbers but cause more severe corneal endothelial and stromal defects. This should prompt further investigations of the pathophysiology underlying human aniridia and ARK

    Altering a Histone H3K4 Methylation Pathway in Glomerular Podocytes Promotes a Chronic Disease Phenotype

    Get PDF
    Methylation of specific lysine residues in core histone proteins is essential for embryonic development and can impart active and inactive epigenetic marks on chromatin domains. The ubiquitous nuclear protein PTIP is encoded by the Paxip1 gene and is an essential component of a histone H3 lysine 4 (H3K4) methyltransferase complex conserved in metazoans. In order to determine if PTIP and its associated complexes are necessary for maintaining stable gene expression patterns in a terminally differentiated, non-dividing cell, we conditionally deleted PTIP in glomerular podocytes in mice. Renal development and function were not impaired in young mice. However, older animals progressively exhibited proteinuria and podocyte ultra structural defects similar to chronic glomerular disease. Loss of PTIP resulted in subtle changes in gene expression patterns prior to the onset of a renal disease phenotype. Chromatin immunoprecipitation showed a loss of PTIP binding and lower H3K4 methylation at the Ntrk3 (neurotrophic tyrosine kinase receptor, type 3) locus, whose expression was significantly reduced and whose function may be essential for podocyte foot process patterning. These data demonstrate that alterations or mutations in an epigenetic regulatory pathway can alter the phenotypes of differentiated cells and lead to a chronic disease state

    Oligodendrocytes: biology and pathology

    Get PDF
    Oligodendrocytes are the myelinating cells of the central nervous system (CNS). They are the end product of a cell lineage which has to undergo a complex and precisely timed program of proliferation, migration, differentiation, and myelination to finally produce the insulating sheath of axons. Due to this complex differentiation program, and due to their unique metabolism/physiology, oligodendrocytes count among the most vulnerable cells of the CNS. In this review, we first describe the different steps eventually culminating in the formation of mature oligodendrocytes and myelin sheaths, as they were revealed by studies in rodents. We will then show differences and similarities of human oligodendrocyte development. Finally, we will lay out the different pathways leading to oligodendrocyte and myelin loss in human CNS diseases, and we will reveal the different principles leading to the restoration of myelin sheaths or to a failure to do so
    corecore