50 research outputs found

    Effects of N-acetylcysteine on amphetamine-induced sensitization in mice

    Get PDF
    Objective: N-acetylcysteine (NAC) is beneficial in psychiatric conditions, including schizophrenia. Patients with schizophrenia exhibit mesolimbic dopamine hyperfunction consequent to an endogenous sensitization process. This sensitization can be modeled in rodents by repeated exposure to psychostimulants, provoking an enduring amplified response at subsequent exposure. The aim of this study was to investigate the effects of NAC on amphetamine sensitization in mice. Methods: D-amphetamine was administered to C57BL/6 mice three times a week for 3 weeks; the dose was increased weekly from 1 to 3 mg/kg. NAC (60 mg/kg) or saline was administered intraperitoneally before saline or amphetamine during the second and third weeks. After a 4-week washout period, latent inhibition (LI) and the locomotor response to amphetamine 2 mg/kg were assessed. Results: Sensitization disrupted LI and amplified the locomotor response; NAC disrupted LI in control mice. In sensitized animals, NAC attenuated the enhanced locomotion but failed to prevent LI disruption. Conclusion: NAC warrants consideration as a candidate for early intervention in ultra-high risk subjects due to its safety profile and the relevance of its mechanism of action. Supplementing this proposition, we report that NAC attenuates sensitization-induced locomotor enhancement in mice. The finding that NAC disrupted LI incites a cautionary note and requires clarification

    Methylphenidate Exposure Induces Dopamine Neuron Loss and Activation of Microglia in the Basal Ganglia of Mice

    Get PDF
    Background: Methylphenidate (MPH) is a psychostimulant that exerts its pharmacological effects via preferential blockade of the dopamine transporter (DAT) and the norepinephrine transporter (NET), resulting in increased monoamine levels in the synapse. Clinically, methylphenidate is prescribed for the symptomatic treatment of ADHD and narcolepsy; although lately, there has been an increased incidence of its use in individuals not meeting the criteria for these disorders. MPH has also been misused as a ‘‘cognitive enhancer’ ’ and as an alternative to other psychostimulants. Here, we investigate whether chronic or acute administration of MPH in mice at either 1 mg/kg or 10 mg/kg, affects cell number and gene expression in the basal ganglia. Methodology/Principal Findings: Through the use of stereological counting methods, we observed a significant reduction (,20%) in dopamine neuron numbers in the substantia nigra pars compacta (SNpc) following chronic administration of 10 mg/kg MPH. This dosage of MPH also induced a significant increase in the number of activated microglia in the SNpc. Additionally, exposure to either 1 mg/kg or 10 mg/kg MPH increased the sensitivity of SNpc dopaminergic neurons to the parkinsonian agent 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Unbiased gene screening employing Affymetrix GeneChipH HT MG-430 PM revealed changes in 115 and 54 genes in the substantia nigra (SN) of mice exposed to 1 mg/kg and 10 mg/kg MPH doses, respectively. Decreases in the mRNA levels of gdnf, dat1, vmat2, and th in the substantia nigr

    Mitochondria and the central nervous system: searching for a pathophysiological basis of psychiatric disorders

    Full text link

    Perturbations in the apoptotic pathway and mitochondrial network dynamics in peripheral blood mononuclear cells from bipolar disorder patients

    Get PDF
    Bipolar disorder (BD) is a severe psychiatric disorder characterized by phasic changes of mood and can be associated with progressive structural brain change and cognitive decline. The numbers and sizes of glia and neurons are reduced in several brain areas, suggesting the involvement of apoptosis in the pathophysiology of BD. Because the changes in mitochondrial dynamics are closely related with the early process of apoptosis and the specific processes of apoptosis and mitochondrial dynamics in BD have not been fully elucidated, we measured the apoptotic pathway and the expression of mitochondrial fission/fusion proteins from BD patients and healthy controls. We recruited 16 patients with BD type I and sixteen well-matched healthy controls and investigated protein levels of several pro-apoptotic and anti-apoptotic factors, as well as the expression of mitochondrial fission/fusion proteins in peripheral blood mononuclear cells (PBMCs). Our results showed that the levels of the anti-apoptotic proteins Bcl-xL, survivin and Bcl-xL/Bak dimer were significantly decreased, while active caspase-3 protein levels were significantly increased in PBMCs from BD patients. Moreover, we observed the downregulation of the mitochondrial fusion-related proteins Mfn2 and Opa1 and the upregulation of the fission protein Fis1 in PBMCs from BD patients, both in terms of gene expression and protein levels. We also showed a significantly decrease in the citrate synthase activity. Finally, we found a positive correlation between Mfn2 and Opa1 with mitochondrial content markers, as well as a negative correlation between mitochondrial fission/fusion proteins and apoptotic markers. Overall, data reported here are consistent with the working hypothesis that apoptosis may contribute to cellular dysfunction, brain volume loss and progressive cognitive in BD. Moreover, we show an important relationship between mitochondrial dynamics and the cell death pathway activation in BD patients, supporting the link between mitochondrial dysfunction and the pathophysiology of BD

    Perturbations in the apoptotic pathway and mitochondrial network dynamics in peripheral blood mononuclear cells from bipolar disorder patients

    Get PDF
    Bipolar disorder (BD) is a severe psychiatric disorder characterized by phasic changes of mood and can be associated with progressive structural brain change and cognitive decline. The numbers and sizes of glia and neurons are reduced in several brain areas, suggesting the involvement of apoptosis in the pathophysiology of BD. Because the changes in mitochondrial dynamics are closely related with the early process of apoptosis and the specific processes of apoptosis and mitochondrial dynamics in BD have not been fully elucidated, we measured the apoptotic pathway and the expression of mitochondrial fission/fusion proteins from BD patients and healthy controls. We recruited 16 patients with BD type I and sixteen well-matched healthy controls and investigated protein levels of several pro-apoptotic and anti-apoptotic factors, as well as the expression of mitochondrial fission/fusion proteins in peripheral blood mononuclear cells (PBMCs). Our results showed that the levels of the anti-apoptotic proteins Bcl-xL, survivin and Bcl-xL/Bak dimer were significantly decreased, while active caspase-3 protein levels were significantly increased in PBMCs from BD patients. Moreover, we observed the downregulation of the mitochondrial fusion-related proteins Mfn2 and Opa1 and the upregulation of the fission protein Fis1 in PBMCs from BD patients, both in terms of gene expression and protein levels. We also showed a significantly decrease in the citrate synthase activity. Finally, we found a positive correlation between Mfn2 and Opa1 with mitochondrial content markers, as well as a negative correlation between mitochondrial fission/fusion proteins and apoptotic markers. Overall, data reported here are consistent with the working hypothesis that apoptosis may contribute to cellular dysfunction, brain volume loss and progressive cognitive in BD. Moreover, we show an important relationship between mitochondrial dynamics and the cell death pathway activation in BD patients, supporting the link between mitochondrial dysfunction and the pathophysiology of BD
    corecore