1,672 research outputs found
Wireless Medical Sensor Networks: Design Requirements and Enabling Technologies
This article analyzes wireless communication protocols that could be used in healthcare environments (e.g., hospitals and small clinics) to transfer real-time medical information obtained from noninvasive sensors. For this purpose the features of the three currently most widely used protocols—namely, Bluetooth® (IEEE 802.15.1), ZigBee (IEEE 802.15.4), and Wi-Fi (IEEE 802.11)—are evaluated and compared. The important features under consideration include data bandwidth, frequency band, maximum transmission distance, encryption and authentication methods, power consumption, and current applications. In addition, an overview of network requirements with respect to medical sensor features, patient safety and patient data privacy, quality of service, and interoperability between other sensors is briefly presented. Sensor power consumption is also discussed because it is considered one of the main obstacles for wider adoption of wireless networks in medical applications. The outcome of this assessment will be a useful tool in the hands of biomedical engineering researchers. It will provide parameters to select the most effective combination of protocols to implement a specific wireless network of noninvasive medical sensors to monitor patients remotely in the hospital or at home
Periodic orbit bifurcations and scattering time delay fluctuations
We study fluctuations of the Wigner time delay for open (scattering) systems
which exhibit mixed dynamics in the classical limit. It is shown that in the
semiclassical limit the time delay fluctuations have a distribution that
differs markedly from those which describe fully chaotic (or strongly
disordered) systems: their moments have a power law dependence on a
semiclassical parameter, with exponents that are rational fractions. These
exponents are obtained from bifurcating periodic orbits trapped in the system.
They are universal in situations where sufficiently long orbits contribute. We
illustrate the influence of bifurcations on the time delay numerically using an
open quantum map.Comment: 9 pages, 3 figures, contribution to QMC200
Bayesian survival modelling of university outcomes
Dropouts and delayed graduations are critical issues in higher education systems world wide. A key task in this context is to identify risk factors associated with these events, providing potential targets for mitigating policies. For this, we employ a discrete time competing risks survival model, dealing simultaneously with university outcomes and its associated temporal component. We define survival times as the duration of the student's enrolment at university and possible outcomes as graduation or two types of dropout (voluntary and involuntary), exploring the information recorded at admission time (e.g. educational level of the parents) as potential predictors. Although similar strategies have been previously implemented, we extend the previous methods by handling covariate selection within a Bayesian variable selection framework, where model uncertainty is formally addressed through Bayesian model averaging. Our methodology is general; however, here we focus on undergraduate students enrolled in three selected degree programmes of the Pontificia Universidad Católica de Chile during the period 2000–2011. Our analysis reveals interesting insights, highlighting the main covariates that influence students’ risk of dropout and delayed graduation
How do wave packets spread? Time evolution on Ehrenfest time scales
We derive an extension of the standard time dependent WKB theory which can be
applied to propagate coherent states and other strongly localised states for
long times. It allows in particular to give a uniform description of the
transformation from a localised coherent state to a delocalised Lagrangian
state which takes place at the Ehrenfest time. The main new ingredient is a
metaplectic operator which is used to modify the initial state in a way that
standard time dependent WKB can then be applied for the propagation.
We give a detailed analysis of the phase space geometry underlying this
construction and use this to determine the range of validity of the new method.
Several examples are used to illustrate and test the scheme and two
applications are discussed: (i) For scattering of a wave packet on a barrier
near the critical energy we can derive uniform approximations for the
transition from reflection to transmission. (ii) A wave packet propagated along
a hyperbolic trajectory becomes a Lagrangian state associated with the unstable
manifold at the Ehrenfest time, this is illustrated with the kicked harmonic
oscillator.Comment: 30 pages, 3 figure
Session-Based Role Programming for the Design of Advanced Telephony Applications
International audienceStimulated by new protocols like SIP, telephony applications are rapidly evolving to o er and combine a variety of communications forms including presence status, instant messaging and videoconferencing. This situation changes and complicates significantly the programming of telephony applications that consist now of distributed entities involved into multiple heterogeneous, stateful and long-running interactions. This paper proposes an approach to support the development of SIP-based telephony applications based on general programming language. Our approach combines the concepts of Actor, Session and Role. Role is the part an actor takes in a session and we consider a session as a collaboration between roles. By using these concepts, we are able to break the complexity of SIP entities programming and provide flexibility for defi ning new ones. Our approach is implemented as a coding framework above JAIN-SIP
Quantum baker maps with controlled-NOT coupling
The characteristic stretching and squeezing of chaotic motion is linearized
within the finite number of phase space domains which subdivide a classical
baker map. Tensor products of such maps are also chaotic, but a more
interesting generalized baker map arises if the stacking orders for the factor
maps are allowed to interact. These maps are readily quantized, in such a way
that the stacking interaction is entirely attributed to primary qubits in each
map, if each subsystem has power-of-two Hilbert space dimension. We here study
the particular example of two baker maps that interact via a controlled-not
interaction. Numerical evidence indicates that the control subspace becomes an
ideal Markovian environment for the target map in the limit of large Hilbert
space dimension.Comment: 8 page
Deep generative modeling for single-cell transcriptomics.
Single-cell transcriptome measurements can reveal unexplored biological diversity, but they suffer from technical noise and bias that must be modeled to account for the resulting uncertainty in downstream analyses. Here we introduce single-cell variational inference (scVI), a ready-to-use scalable framework for the probabilistic representation and analysis of gene expression in single cells ( https://github.com/YosefLab/scVI ). scVI uses stochastic optimization and deep neural networks to aggregate information across similar cells and genes and to approximate the distributions that underlie observed expression values, while accounting for batch effects and limited sensitivity. We used scVI for a range of fundamental analysis tasks including batch correction, visualization, clustering, and differential expression, and achieved high accuracy for each task
Orthogonality Catastrophe in Parametric Random Matrices
We study the orthogonality catastrophe due to a parametric change of the
single-particle (mean field) Hamiltonian of an ergodic system. The Hamiltonian
is modeled by a suitable random matrix ensemble. We show that the overlap
between the original and the parametrically modified many-body ground states,
, taken as Slater determinants, decreases like , where is
the number of electrons in the systems, is a numerical constant of the
order of one, and is the deformation measured in units of the typical
distance between anticrossings. We show that the statistical fluctuations of
are largely due to properties of the levels near the Fermi energy.Comment: 12 pages, 8 figure
Causas del deterioro prematuro de pavimentos de hormigón de la ciudad de Bahía Blanca y rutas de acceso: su relación con la franja capilar
Se estudiaron pavimentos de hormigón de la ciudad de Bahía Blanca y de una rotonda de acceso, con el propósito de evaluar el estado de conservación y determinar las causas de deterioro. El área relevada abarca 33 km2. Se analizó el estado de las losas (fallas estructurales, superficies de abrasión, fracturas y deterioro por la reacción álcali-sílice) y el tipo de agregado (fino y grueso).
Se tomaron muestras para determinar porosidad, abrasión, densidad y para realizar estudios petrográficos de los agregados y del hormigón. Se realizó un estudio estadístico sobre las 15 776 losas relevadas y se concluyó que el 48 % presenta deterioro. El 47 % se debe a fallas estructurales, y de estas, el 14 % necesita reemplazo total. Es frecuente observar lavado superficial, en especial en las esquinas. Esto se debe al efecto del tránsito y al inadecuado drenaje del agua de lluvia que se acumula sobre el pavimento.
Por otra parte, se evaluó el comportamiento hidrodinámico de la zona no saturada (ZNS) de un sector de la ciudad, haciendo especial énfasis en la franja capilar en un terreno limo arcilloso, mediante modelación numérica, y se compararon los resultados con mediciones directas. El área está caracterizada por un nivel freático somero y aguas de elevado tenor salino. Se observó que la franja capilar se moviliza masivamente junto a las fluctuaciones del nivel con una altura capilar de 123 cm. Los resultados obtenidos indican que existe una influencia hidrodinámica en los niveles superiores de la ZNS.Trabajo presentado por el Centro de Geología Aplicada, Agua y Medio Ambiente (CGAMA
- …
