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Bayesian survival modelling of university outcomes
Catalina A. Vallejos, Mark F.J. Steel 1

Department of Statistics, University of Warwick

Summary

Dropouts and delayed graduations are critical issues in Higher Education Systems world-
wide. A key task in this context is to identify risk factors associated to these events, providing
potential targets for mitigating policies. For this purpose, we employ a discrete time compet-
ing risks survival model, dealing simultaneously with university outcomes and its associated
temporal component. We define survival times as the duration of the student’s enrolment at
university and possible outcomes as graduation or two types of dropout (voluntary and invol-
untary), exploring the information recorded at admission time (e.g. educational level of the
parents) as potential predictors. While similar strategies have been previously implemented,
we extend the previous methods by handling covariate selection within a Bayesian vari-
able selection framework, where model uncertainty is formally addressed through Bayesian
Model Averaging. Our methodology is general, however here we focus on undergraduate
students enrolled at three selected degree programmes of the Pontificia Universidad Católica
de Chile during the period 2000-2011. Our analysis reveals interesting insights, highlighting
the main covariates that influence students’ risk of dropout and delayed graduation.

Keywords: University dropout; Delayed graduation; Bayesian model averaging; Competing risks;

Proportional Odds model

1 Introduction

During the last several decades, the higher education system has seen substantial growth in Chile,
evolving from around 165,000 students in the early 1980’s to over 1 million enrolled in 2012 (see
http://www.mineduc.cl/). Nowadays, the access to higher education is no longer restricted to
an elite group. Among other reasons, this is due to a bigger role for education as a tool for
social mobility, the opening of new institutions and a more accessible system of student loans
and scholarships. However, currently, more than half of the students enrolled at Chilean higher
education institutions do not complete their degree. This includes students expelled for academic
or disciplinary reasons and those who voluntarily withdrew (dropout that is not instigated by
the university but is also not necessarily the student’s decision; e.g. forced by financial hardship).
Another issue is the high proportion of late graduations, where obtaining the degree requires more
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time than the nominal duration of the programme (Chilean universities allow more flexibility than
the e.g. British educational system, so students can repeat failed modules and/or have a reduced
academic load in some semesters). Dropout and delays in graduation involve a waste of time and
resources from the perspective of the students, their families, universities and the society. While
the focus here is on Chile, these issues are also critical in many other parts of the world.

There is a large literature devoted to university dropout. It includes conceptual models based
on psychological, economic and sociological theories (e.g. Tinto, 1975; Bean, 1980). Instead,
we focus on empirical models. Previous research often considered the dropout as a dichoto-
mous problem, neglecting the temporal component and focusing on whether or not a student has
dropped out at a given time. Nonetheless, ignoring when the dropout occurs is a serious waste
of information (Willett and Singer, 1991) — potential high risk periods will not be identified and
no distinction between early and late dropout will be made. An alternative is to use (standard)
survival models for the time to dropout (e.g. Murtaugh et al., 1999), labelling graduations as
censored observations. However, this contradicts the idea of censoring because dropout is a pos-
sibility only whilst the student is enrolled at university (those who graduate will never dropout).
Instead, graduation must be considered as a competing event and incorporated into the model.
The drawbacks of treating competing risks events as if they were censored observations are dis-
cussed in Andersen et al. (2012).

We wish to identify risk factors associated with dropouts and delayed graduations, focusing
on undergraduate students of the Pontificia Universidad Católica de Chile (PUC). This is one of
the most prestigious universities in Chile (and the best university in Latin America, according
to QS Ranking 2014, see http://www.topuniversities.com/). Despite having one of the lowest
dropout rates in the county (far below the national level), dropout is still an important issue for
some degrees of the PUC. Similarly, while delays in graduation are rarely observed in some
degree programs (e.g. Medicine), some others are particularly affected by this issue. Therefore,
it is critical for university authorities to identify risk factors associated with these events as this
might inspire policies mitigating late graduations and dropouts.

A competing risks model is proposed for the length of stay at university, where the possible
events are: graduation, voluntary dropout and involuntary dropout. These are defined as the final
academic situation recorded by the university at the end of 2011 (students that have not experi-
enced any of these events by then are recorded as right-censored observations and censoring is
assumed to be non-informative). Survival times are defined as the length of stay at university,
measured in semesters from admission (which is the frequency at which the university updates
its records), producing survival times that are inherently discrete. It is an advantage of this ap-
proach that it deals jointly with graduations and dropouts. We explore the information recorded
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at admission time (e.g. sex, educational level of the parents) as potential risks factors associated
with these outcomes. While similar strategies have been previously implemented, we extend the
previous methods by handling covariate selection within a Bayesian framework, where model
uncertainty is formally addressed through Bayesian Model Averaging (BMA). Additionally, we
illustrate how a Bayesian scheme is particularly useful here, where the nature of the data pre-
cludes maximum likelihood inference for the model that is typically adopted in this setting.

The construction and the main features of the PUC dataset are summarized in Section 2,
showing high heterogeneity (in terms of academic outcomes and the student population char-
acteristics) among programmes. Section 3 introduces a competing risks model for university
outcomes, which can be estimated via a multinomial logistic regression. Section 4 proposes a
suitable prior structure and introduces a Markov chain Monte Carlo (MCMC) algorithm, exploit-
ing a hierarchical representation of the multinomial logistic likelihood (based on Holmes and
Held, 2006; Polson et al., 2013). We also propose BMA as a tool for detecting risk factors as-
sociated with dropouts and delayed graduations, exploring all covariates configurations, directly
accounting for the uncertainty linked to the covariate selection. Empirical results are summarised
in Section 5, focusing on three science programmes that are severely affected by dropout and
late graduations. Our analysis reveals interesting insights and highlights the relevant covariates
that characterise students with higher risk of dropout and delayed graduation, providing potential
candidates for mitigating policies. Finally, Section 6 concludes.

2 The PUC dataset

The PUC provided anonymised information about 34,543 undergraduate students enrolled during
the period 2000-2011 via the ordinary admission process (based on high school marks and an
standardised selection test, applied at a national level). We only analyse the degree programmes
that existed during the entire period and students who: (i) were enrolled for at least 1 semester
(the dropout produced right after enrolment might have a different nature), (ii) were enrolled in a
single programme (students doing parallel degrees usually need more time to graduate and have
less risk of dropout), (iii) did not have validated previously passed modules from other degree
programmes (which could reduce the time to graduation), (iv) were alive by the end of 2011
(0.1% of the students had died by then) and (v) had full covariate information. Overall, 78.7%
of the students satisfied these criteria. The Supplementary Material breaks this number down by
program. Throughout, we will only consider this subset of the data, pertaining to 27,189 students.

By the end of 2011, 41.9% of the students were still enrolled (right censored), 37.2% had
graduated, 6.6% were expelled (involuntary dropout, mostly related to poor academic perfor-
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mances), 10.7% withdrew (voluntary dropout), and 3.7% abandoned the university without an
official withdrawal (after not being enrolled for any modules for at least 2 consecutive semesters).
Following university policy, the latter group is classified as voluntary dropout. The high percent-
age of censoring mostly relates to students from later years of entry, who were not yet able
to graduate by the end of 2011. The performance of students is not homogenous across pro-
grammes (Figure 1). To illustrate, the following statistics refer to the cohorts starting in 2000-
2004 (avoiding later cohorts where a large number of students are right censored). In terms of
total dropout, Medicine (4.6%) and Chemistry (71.2%) have the lowest and highest rates, respec-
tively. The highest rates of involuntary and voluntary dropout are for Chemistry (28.8%) and
Astronomy (54.5%), respectively. Dropouts are mostly observed during the first semesters of
enrolment. In contrast, graduation times are concentrated on large values, typically above the
official length of the programme (which varies between 8 and 14 semesters, with a typical value
of 10 semesters). As shown in Figure 1, programmes also exhibit strong heterogeneity in terms
of timely graduation, the proportion of which varies from 88% (Medicine) to 11% (Education
Elementary School).

Table 1: Information recorded at admission time. Options for categorical variables in parentheses
Demographic factors
Sex (female, male)
Region of residence (Metropolitan area, others)
Socioeconomic factors
Parents education (at least one with a technical or university degree, no degrees)
High school type (private, subsidized private, public)
Funding (scholarship and loan, loan only, scholarship only, none)
Admission-related factors
Selection score
Application preference (first, others)
Gap between high school graduation and admission to PUC (1 year or more, none)

Demographic, socioeconomic and variables related to the admission process are recorded
(see Table 1). For these covariates, substantial differences are observed between programmes (see
Supplementary Material, Section A). In terms of demographic factors, some degrees have a very
high percentage of female students (e.g. all education-related programmes) while e.g. most of the
Engineering students are male. The proportion of students who live outside the Metropolitan area
is more stable across programmes (a particularly high percentage is observed in the Education
for Elementary School degree taught in the Villarrica campus, which is located in the south of
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Figure 1: Cohorts 2000-2004. Left: distribution of students according to final academic situation.
From darkest to lightest, shaded areas represent the proportion of censored observations, gradua-
tion, involuntary dropout and voluntary dropout, respectively. Right: among graduated students,
proportion of students graduated within the nominal duration of the programme (lighter area).

Chile). Strong differences are also detected for the socioeconomic characteristics of the students.
Chilean schools are classified according to their funding system as public (fully funded by the
government), subsidised private (the state covers part of the tuition fees) and private (no funding
aid). This classification can be used as a proxy for the socioeconomic situation of the student
(low, middle and upper class, respectively). The educational level of the parents is usually a good
indicator of socioeconomic status as well. Some degrees have a very low percentage of students
that graduated from public schools (e.g. Business Administration and Economics) and others
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have a high percentage of students whose parents do not have a higher degree (e.g. Education
for Elementary School in Villarrica). In addition, a few programmes have low rates of students
with a scholarship or student loan (e.g. Business Administration and Economics). Finally, “top”
programmes (e.g. Medicine, Engineering) only admit students with the highest selection scores.
For instance, in 2011, the lowest selection score in Arts was 604 but Medicine did not enrol
any students with a score below 787. In the same spirit, these highly selective programmes only
enrolled students that applied to it as a first preference.

The substantial heterogeneity (in terms of outcomes and covariates) precludes meaningful
modelling across programmes. Thus, the analysis will be done separately for each degree.

3 Discrete time competing risks models

Standard survival models only allow for a unique event of interest, often recording occurrences
of alternative events as censored observations. In the context of university outcomes, graduations
have been treated as censored observations when the event of interest is dropout (e.g. Murtaugh
et al., 1999). However, those students who graduated are obviously no longer at risk of dropout
(from the same degree, within the same enrolment). Instead, competing risks models are more
appropriate when multiple event types can occur and there is a reason to believe they are the result
of different mechanisms. These models simultaneously incorporate both the survival times and
the event types (or “causes”). Most of the previous literature focuses on continuous survival times
(e.g. Crowder, 2001). Instead, in the context of university outcomes (where survival times are
usually measured in numbers of academic terms), a discrete time approach is more appropriate. In
a discrete-time competing risks setting, the variable of interest is (R, T ), where R ∈ {1, . . . ,R}
denotes the type of the observed event and T ∈ {1, 2, . . .} is the survival time. Analogously to
the single-event case, a model can be specified via the cause-specific cumulative incidence or
hazard functions, defined respectively as

F (r, t) = P (R = r, T ≤ t) and h(r, t) =
P (R = r, T = t)

P (T ≥ t)
. (1)

In turn, these quantities represent the proportion of subjects for which an event type r has been
observed by time t and the conditional probability of observing an event of type r at period t
given that no event occurred before. Like the Kaplan-Meier estimator in the discrete case, the
non-parametric maximum likelihood estimator of h(r, t) is the ratio between the number of events
of type r observed at time t and the total number of subjects at risk at time t (Crowder, 2001). An
alternative approach would be to define a competing risks model based on the distribution of the
latent survival times T1, . . . , TR (with T = min{T1, . . . , TR}). Nonetheless, as shown in Tsiatis
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Figure 2: Non-parametric estimates of cause-specific hazard rates for Chemistry students (cohorts
2000-2004).

(1975), this approach leads to an unidentifiability problem as the observed data itself does not
allow us to distinguish between independent and dependent latent survival times.

Sometimes, a simple (cause-specific) parametric model can be adopted. However, such mod-
els are not suitable for the PUC dataset, where the cause-specific hazard rates have a rather erratic
behaviour over time (Figure 2 illustrates this for Chemistry students). In particular, no gradua-
tions are observed during the first semesters of enrolment, inducing a zero graduation hazard at
those times. Graduations only start about a year before the official duration of the programme (10
semesters). For this programme, the highest risk of being expelled from university is at the end
of the second semester. In addition, during the first years of enrolment, the hazard of voluntary
dropout has spikes located at the end of each academic year (even semesters). Therefore, more
flexible models are required in order to accommodate these hazard trajectories.

3.1 Proportional Odds model for competing risks data

Cox (1972) proposed a Proportional Odds (PO) model for discrete times and a single event type.
It is a discrete variation of the well-known Cox Proportional Hazard model, proposed in the same
seminal paper. Let xi ∈ Rk be a row vector containing the covariate values for individual i and
β = (β1, . . . , βk)

′ ∈ Rk a vector of regression parameters. The Cox PO model is given by

log

(
h(t|δt, β;xi)

1− h(t|δt, β;xi)

)
= δt + x′iβ, i = 1, . . . , n, (2)

where {δ1, δ2, . . .} denote the baseline log-odds (with respect to no event) at times t = 1, 2, . . ..
The model in (2) can be estimated via a binary logistic regression with time-specific intercepts as
logit [h(t|δt, β;xi)] =

∑∞
s=1 δsDis(t)+x′iβ, with Dis(t) = 1 if s = t and 0 otherwise (Singer and

7



Willett, 1993). In fact, in (2), the likelihood contribution of an individual i is

Li =

[
h(ti|δti , β;xi)

1− h(ti|δti , β;xi)

]1−ci ti∏
s=1

[1− h(s|δs, β;xi)], (3)

with ci = 1 if the survival time is censored, 0 otherwise. This coincides with the likelihood
associated to independent Bernoulli trials, with Yit = 1 if the event is observed at time t for
individual i and 0 otherwise (t ≤ ti) and P (Yit = yit) = [h(t|δt, β;xi)]

yit [1− h(t|δt, β;xi)]
1−yit .

In the competing risks case, withR possible events, define δrt as the baseline log-odd of ob-
serving the event r (with respect to no event) at time t and let β(r) (∈ Rk) be the associated vector
of regression parameters. Define B =

{
β(1), . . . , β(R)

}
and δ = {δ11, . . . , δR1, δ12, . . . , δR2, . . .},

the model in (2) can then be extended to accommodate theR competing events as

log

(
h(r, t|δ, B;xi)

h(0, t|δ, B;xi)

)
= δrt + x′iβ(r), r = 1, . . . ,R; i = 1, . . . , n, (4)

where h(0, t|δ, B;xi) = 1−
R∑
r=1

h(r, t|δ, B;xi) (5)

is the hazard of no event being observed at time t (t = 1, 2, . . .). The latter is equivalent to

h(r, t|δ, B;xi) =
eδrt+x

′
iβ(r)

1 +
∑R

s=1 e
δst+x′iβ(s)

. (6)

Here, {h(r, t|δ, B;xi)}’s represent cause-specific hazard rates, defined as the instant probability
of observing an event of type r given that no event (type r or any other) has been observed before.
Unless we assume independence between the cause-specific survival processes, the latter does
not necessarily coincide with the marginal hazard rate, i.e. the instant probability of observing
an event of type r given that an event of type r has not happened before (Crowder, 1996).

Similar to (2), the latter model can be estimated by means of a multinomial logistic regression
where the δrt’s are estimated as binary time- and cause-specific intercepts. The latter notation
implies that the same predictors are used for each cause-specific component (but this can be
generalised). In (4), covariates influence both the marginal probability of the event P (R = r) and
the rate at which the event occurs. Positive values of the cause-specific coefficients indicate that
(at any time point) the hazard of the corresponding event increases with the associated covariate
values and the effect of covariates on log odds is constant over time. In the context of the PUC
analysis, if a covariate has a negative coefficient related to graduations, that would constitute a
risk factor associated to delayed graduations (as the corresponding students will tend to graduate
less and more slowly). Similarly, positive values of the coefficients associated to voluntary and
involuntary dropout will characterise risk factors linked to these events.
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For university outcomes, (4) has been used by Scott and Kennedy (2005), Arias Ortis and
Dehon (2011) and Clerici et al. (2014), among others. Nonetheless, its use has some drawbacks.
Firstly, it involves a large number of parameters (if T is the largest recorded time, there are
R × T different δrt’s). Scott and Kennedy (2005) overcome this by assigning a unique cause-
specific log-odds δrt0 to the period [t0,∞) (for fixed t0). The choice of t0 is rather arbitrary but
it is reasonable to choose t0 such that most individuals already experienced one of the events (or
censoring) by time t0. Secondly, maximum likelihood inference on (4) is problematic in our con-
text because the range of the survival times associated with graduations and dropouts do not have
a large overlap (while no graduations can be observed during the first semesters of enrollment,
only few dropouts are observed at later times). The multinomial logistic literature refers to this
as (quasi) complete separation of the outcomes with respect to the predictors, i.e. some outcomes
are not (or rarely) observed for particular covariate configurations (Albert and Anderson, 1984).
In other words, the predictors can (almost) perfectly predict the outcomes. In (4), these predictors
include binary variables linked to the δrt’s. Therefore, (quasi) complete separation occurs if the
event types are (almost) entirely defined by the survival times. For example, in our context, no
graduations can be observed during the second semester of enrollment. Therefore, the likelihood
function will be maximized when the cause-specific hazard related to graduations (defined in (6))
is equal to zero at time t = 2. Thus, from equation (4) it follows that the maximum likelihood es-
timate for the corresponding cause-specific log-odds parameter δr2 would be equal to −∞. This
problem will typically arise when dealing with educational data, although it might diminish in
shorter programmes (e.g. 2 years college programmes).

Singer and Willett (2003) use polynomial baseline odds to overcome the separation issue.
This option is less flexible than (4), and its use is only attractive when a low-degree polynomial
can adequately represent the baseline hazard odds. This is not the case for the PUC dataset, where
cause-specific hazard rates have a rather complicated behaviour (see Figure 2) and not even high-
order polynomials provided a good fit (not shown). Another alternative is to parametrize the
model in terms of δ∗rt = eδrt and to set δ∗rt = 0 in those periods where the separation occurs.
Nonetheless, this requires non trivial prior elicitation as the periods affected by the separation
issue are not completely defined by university regulations. For example, students can graduate at
any time as long as they approve all graduation requirements. In general, we would not expect
this to happen before the official duration of each programme. However, students are allowed
to take extra credits each semester, possibly leading to early graduations. Therefore, while we
could fix the hazards for the 1st (and perhaps the 2nd) semester of studies, later periods can not
be fixed a priori and the separation will remain an issue. Moreover, this strategy avoids the use of
estimation algorithms that are based on a multinomial logistic scheme, requiring the development
of tailored estimation procedures. In contrast, as described in Section 4.2, posterior inference for
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the model in (4) under the prior described below can be implemented as a simple extension of
available procedures, e.g. Polson et al. (2013).

Here, the model in (4) is adopted for the analysis of the PUC dataset, using Bayesian meth-
ods to handle the separation issue. As in Scott and Kennedy (2005), we define the last period as
[t0,∞), using t0 = 16 semesters (after which few students were still enrolled). For identifiabil-
ity, we reparametrize the log-odds parameters δrt’s, defining the δr1’s (first semester) as overall
cause-specific intercepts (the corresponding binary variables are equal to 1 for all periods) and
interpreting the remaining δrt’s as cause-specific log-odds changes (w.r.t. the first semester).

4 Bayesian Proportional Odds competing risks regression

4.1 Prior specification

An alternative solution to the separation issue lies in the Bayesian paradigm, allowing the extrac-
tion of information from the data via an appropriate prior distribution for the log-odds parameters
δrt’s (Gelman et al., 2008). The Jeffreys prior can be used for this purpose (Firth, 1993). This is
attractive when reliable prior information is absent. In a binary logistic case, the Jeffreys prior
is proper and its marginals are symmetric with respect to the origin (Ibrahim and Laud, 1991).
These properties have no easy generalisation for the multinomial case, where an expression for
the Jeffreys prior is very complicated (Poirier, 1994). Instead, Gelman et al. (2008) suggested
weakly informative independent Cauchy priors (with scale equal to 2.5) for a re-scaled version
of the regression coefficients. When the outcome is binary, these Cauchy (and any Student t)
priors are symmetric like the Jeffreys prior but produce fatter tails (Chen et al., 2008). The prior
in Gelman et al. (2008) assumes that the regression coefficients fall within a restricted range. For
the model in (4), it shrinks δrt’s estimates away from −∞ (and ∞), i.e. assigning small prob-
ability to near-zero cause-specific hazard rates at all periods. Such a prior is convenient if the
separation of the outcomes relates to a small sample size (where increasing the sample size will
eventually eliminate this issue). This is not the case for the PUC dataset, or other typical data on
four-year-university outcomes, where the separation arises from structural restrictions (e.g. it is
not possible to graduate during the first periods of enrolment). Hence, we expect δrt’s to have a
large negative value in those periods where event r is very unlikely to be observed (inducing a
nearly zero cause-specific hazard rate). Defining δ(r) = (δr1, . . . , δrt0)

′, we suggest the prior

δ(r) ∼ Cauchyt0(0t0 , ω
2It0), r = 1, . . . ,R, (7)

where It0 denotes the identity matrix of dimension t0 and 0t0 is a vector of t0 zeros. Equivalently,

π(δ(r)|Λr) ∼ Normalt0(0t0 ,Λ
−1
r ω2It0), Λr ∼ Gamma(1/2, 1/2), r = 1, . . . ,R. (8)
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Figure 3: Chemistry students: posterior median trajectory of the hazard rate for each competing event,
using the model in (4) under δ(r) ∼ Cauchyt0(0t0 , ω

2It0).

In contrast to the prior in Gelman et al. (2008), the multivariate Cauchy prior in (7) does not
lead to independence between the δrt’s. Small values of ω2 result in tight priors (as in Gelman
et al., 2008). Instead, large values of ω2 assign non-negligible probability to large negative (and
positive) values of the δrt’s. For the analysis of the PUC dataset, ω2 = 100 is adopted matching
the suggestion given in Gelman et al. (2008) for the intercept term. Of course, we could also
define this hyper-parameter from prior information. However, this would require non-trivial prior
elicitation because, as discussed early, it is not entirely clear a priori which δrt’s are affected
by the separation issue. For Chemistry students, Figure 3 illustrates that our choice of setting
ω2 = 100 leads to essentially identical posterior estimates for the cause-specific baseline cause-
specific hazard rates as, say, ω2 = 10. For simplicity, covariates are excluded for this comparison.
We conclude that: (i) choosing a value of ω2 is not critical for those periods where the separation
is not a problem (where the data is more informative and dominates posterior inference) and
(ii) the actual value of ω2 is not critical as long as it is large enough to allow near-zero hazard
rates on the periods where this is required (e.g. semesters 1 to 7 for graduations in Chemistry).
Including covariates with the prior as below, we found (not reported) that posterior inference on
the regression coefficients in B is also robust with respect to the choice of ω2.

We define X = (x1, . . . , xn)′ and independently assign to each vector of cause-specific re-
gression coefficients the g-prior described in Sabanés Bové and Held (2011), i.e.

β(r)|gr ∼ Normalk(0k, 4gr(X ′X)−1), r = 1, . . . ,R. (9)

This is an extension of the prior introduced in Zellner (1986) in the context of Generalized Linear
Models (in the logistic case, the only difference is the scaling factor 4 in the covariance matrix).
The family of g-priors is a popular choice in Bayesian model selection and averaging under
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uncertainty regarding the inclusion of covariates (e.g. Fernández et al., 2001). In particular, they
are invariant to scale transformations of the covariates and incorporate the correlation structure
among the covariates. However, the choice of values for {g1, . . . , gR} can fundamentally affect
the posterior inference and is quite challenging (Liang et al., 2008; Ley and Steel, 2009).

For a binary logistic regression, Hanson et al. (2014) elicit gr using averaged prior infor-
mation (across different covariate configurations). Alternatively, and in line with the Bayesian
treatment of uncertainty, a hyper-prior can be assigned to each gr, inducing a hierarchical prior
structure (Liang et al., 2008). Here, we adopt the hyper-g/n prior of Liang et al. (2008), i.e.

π(gr) =
1

n

(
1 +

gr
n

)−2
. (10)

This hyper-prior was also investigated in Sabanés Bové and Held (2011), who show it leads to
similar results as the hyper-prior implicitly adopted by Zellner and Siow (1980).

To assess the robustness of our results to the prior for the regression coefficients, we also
investigated alternative prior choices such as the Zellner (1986) g-prior in combination with a
benchmark Beta hyper prior for g (Ley and Steel, 2012). We concluded that this prior leads to
very similar results (Section C.1 of the Supplementary Material).

4.2 Markov chain Monte Carlo implementation

Bayesian inference for a multinomial (or binary) logistic regression is not straightforward. There
is no conjugate prior and sampling from the posterior distribution is cumbersome (Holmes and
Held, 2006). A popular approach is to use an alternative representation of the multinomial lo-
gistic likelihood. For instance, Forster (2010) exploits the relationship between a multinomial
logistic regression and a Poisson Generalized Linear Model. Holmes and Held (2006) adopt a
hierarchical structure where the logistic link is represented as an infinite scale mixture of nor-
mals. Alternatively, Frühwirth-Schnatter and Frühwirth (2010) approximated the logistic link
via a finite mixture of normal distributions. Instead, we adapt the hierarchical structure used in
Polson et al. (2013) in order to construct a Gibbs sampling scheme for the multinomial logistic
model, under the prior described in Section 4.1. Unlike the original implementation in Polson
et al. (2013), we do not assume a Gaussian prior for the regression coefficients (which in our case
includes δrt’s and β(r)’s). In contrast, our prior is a product of independent multivariate Cauchy
and hyper-g prior components. However, as both of these components can be represented as a
scale mixture of normal distributions (see (8) and (9)), the sampler in Polson et al. (2013) can be
extended by adding extra steps to the sampler, where values for Λ1, . . . ,ΛR, g1, . . . , gR in (8) and
(9) are generated. In brief, at each iteration and for each r ∈ {1, . . . ,R}, we sample
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• (δ(r), β(r))
′|Λr, gr according to the sampler described in Section 3.1 of Polson et al. (2013)

• Λr|β(r), δ(r), gr ∼ Gamma
(
t0+1
2
,
δ′
(r)
δ(r)

2ω2

)
,

• gr|β(r), δ(r),Λ(r) ∼ π(gr|β(r)) ∝ g
−k/2
r exp

{
−
β′
(r)
X′Xβ(r)

2gr

}
π(gr).

As the full conditional for gr is not a known distribution, an adaptive Metropolis-Hastings
step (see Section 3 in Roberts and Rosenthal, 2009) is implemented for these parameters. A full
description of this MCMC sampler is provided in Section B of the Supplementary Material. Our
freely available R code (https://github.com/catavallejos/UniversitySurvival) is also documented
in the Supplementary Material (Section D).

4.3 Bayesian model averaging

Our main goal is to identify the important risk (or prevention) factors associated with delayed
graduations and both types of dropout. The latter can be translated into a model comparison
problem, where candidate models are defined by different covariates. If k∗ is the number of
available covariates (k∗ might differ from the number of regression coefficients k because cate-
gorical covariates may have more than two levels), there areM = 2k

∗ candidate models. These
are denoted by M1, . . . ,MM and we assume that if a categorical covariate is included, all its
levels are represented. A Bayesian response to model uncertainty is Bayesian Model Averaging
(BMA), which averages inference over all possible models, weighted according to the posterior
model probabilities (Hoeting et al., 1999). BMA is a formal probabilistic way of dealing with
model uncertainty and has been shown to lead to better predictive performance than choosing a
single model (Raftery et al., 1997; Fernández et al., 2001). Let Tobs and Robs be the observed
times and event types, respectively. Using BMA, the posterior density of each cause-specific
vector of regression coefficients is

π(β(r)|Tobs, Robs) =
M∑
m=1

πm(β(r)|Tobs, Robs)π(Mm|Tobs, Robs), (11)

where πm(β(r)|Tobs, Robs) is the posterior density of β(r) under model Mm and π(Mm|Tobs, Robs)

corresponds to the posterior probability assigned to Mm. Both can be derived using Bayes theo-
rem. In particular, the latter corresponds to

π(Mm|Tobs, Robs) =
L(Tobs, Robs|Mm)π(Mm)∑M
j=1 L(Tobs, Robs|Mj)π(Mj)

, with
M∑
j=1

π(Mj) = 1, (12)
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where L(Tobs, Robs|Mm) is the marginal likelihood of the data under the m-th model, after inte-
grating out all model parameters with their prior. For δ(r) we use the prior (7) and for β(r) the prior
is defined as in (9), replacing X by the design matrix corresponding to the covariates included in
model m (the elements of β(r) corresponding to excluded covariates have a prior point-mass at
zero). In (12), π(M1), . . . , π(MM) represent the prior on model space. For the latter, we adopt a
uniform prior assigning the same probability to every model

π(Mm) =
1

M
, m = 1, . . . ,M. (13)

This prior has an equivalent formulation in terms of covariate inclusion indicators γj (with γj = 1

if the j-th covariate is included in the model and γj = 0 otherwise) by independently setting
pj = Pr(γj = 1) = 0.5. Alternatively, and assuming pj is the same for all covariates, we can
assign a hyperprior to this common inclusion probability, which leads to less informative priors
in terms of model size (Ley and Steel, 2009). This prior downweighs models with size around
k∗/2 = 4, which is perhaps less intuitive for this application.

If k∗ is small, the expressions involved in (11) could be estimated via a complete enumeration
of the model space. In such a case, for each model, the MCMC sampler described in Section 4.2
can be run and the associated marginal likelihoods can be estimated e.g. using the Bridge sam-
pling method proposed in Meng and Wong (1996). However, this strategy is time-consuming and
does not scale well as k∗ increases (even for moderate values). Instead, we extend the MCMC
sampler described in Section 4.2 so that it also explores the model space and posterior prob-
abilities associated to each model can be directly estimated from the MCMC chain. Here we
implement a simple approach which is able to deal effectively with small numbers of covariates
(such as in the case of the PUC dataset). This extends the implementation described in Section
4.2 by adding an extra step where covariate-inclusion indicators γj are sampled. At each iteration,
the sampler sketched in Section 4.2 is implemented conditional on the currently sampled value of
γ = (γ1, . . . , γk∗)

′. Then, new values for γ are sequentially generated from the full conditionals

π(γj|γ−j, δ, B,Λ, g) ∝ L(γ)×

[
R∏
r=1

π(β(r)|gr;Xγ)

]
, (14)

with γ−j = {γ1 . . . , γj−1, γj+1, . . . , γk∗}, Λ = {λ1, . . . , λR} and g = {g1, . . . , gR}. In (14), L(γ)

represents the likelihood function associated to the model defined by (6) and the covariate config-
uration induced by γ. Additionally, π(β(r)|gr;Xγ) is defined as in (9), replacingX byXγ , i.e. the
design matrix based on the covariate configuration defined by γ. As (14) does not correspond
to a known distribution, we implemented Metropolis-Hastings updates as further detailed in the
Supplementary Material (Section B). BMA results obtained via this extended sampler were very
similar to those obtained via a complete enumeration over the model space.
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BMA estimates can be directly obtained by post-processing the sampled chain (after remov-
ing a burn-in period). In particular, π(Mm|Tobs, Robs) can be estimated as the proportion of times
that Mm was visited. In addition, the Marginal Posterior Probability of Inclusion (MPPI), sum-
marising the importance of each covariate, is estimated as the proportion of times that the sampled
value of γj is equal to 1.

5 Empirical results for the PUC data

The PUC dataset is analysed through the model in (4) using the prior and the algorithm described
in Section 4. Due to marked differences (in terms of covariates and outcomes) between different
degree programmes (see Section 2), we fit separate models for each programme. This strategy
alleviates multiple comparison issues as for each degree programme we make separate assump-
tions (e.g. regarding covariate inclusion). In addition, this decision is supported by the results
presented in this section, where the BMA approach selects different sets of covariates across de-
gree programmes. In this article, we focus on some of the science programmes for which the
rates of dropout and/or late graduations are normally higher. In particular, we consider Chem-
istry (379 students), Mathematics and Statistics (598 students) and Physics (237 students). For
all programmes, 8 covariates are available (see Table 1), inducing 28 = 256 possible models
(using the same covariates for each cause-specific hazard). Selection scores cannot be directly
compared across admission years (the test varies from year to year). Hence, the selection score
is replaced by an indicator of being in the top 10% of the enrolled students (for each programme
and admission year). The following regression coefficients are defined for each cause (the sub-
script r is omitted for ease of notation): β1 (sex: female), β2 (region: metropolitan area), β3
(parents’ education: with degree), β4 (high school: private), β5 (high school: subsidised private),
β6 (funding: scholarship only), β7 (funding: scholarship and loan), β8 (funding: loan only), β9
(selection score: top 10%), β10 (application preference: first) and β11 (gap after high school grad-
uation: yes). For all degree programmes, we run the MCMC algorithm for 200,000 iterations,
storing draws every 10 iterations. The results presented here exclude the first 100,000 iterations
as a conservative burn-in period. Trace plots and the usual convergence criteria strongly suggest
good mixing and convergence of the chains (see Section C of the supplementary material).

5.1 Temporal behaviour

Figure 4 shows the estimated trajectory of the baseline cause-specific hazard rates (without addi-
tional covariates), capturing the temporal behaviour of the analysed outcomes. The first row of
panels in Figure 4 roughly recovers the same patterns as in Figure 2, suggesting these estimates
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Figure 4: BMA estimates for baseline cause-specific hazards (without additional covariates).
Solid lines represent the trajectory of the posterior medians and dashed lines represent the associ-
ated limits for the 95% highest posterior density interval. For graduation hazards, dotted vertical
lines are located at the official duration of the programme (in Mathematics and Statistics, students
in Statistics can take two additional semesters to get a professional degree).

are in line with the data. Some similarities appear between these programmes. For example, the
highest risk of involuntary dropout occurs by the end of the second semester, possibly related to
poor performances during the first year of studies (where the students’ performance can be af-
fected by a sudden transition from high school to university standards). In addition, during the 4
first years of enrolment, the hazard rate associated to voluntary dropouts has spikes located at even
semesters. This is not surprising as withdrawing at the end of the academic year allows students
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to re-enroll in a different programme without having a gap in their academic careers. In terms of
graduation, mild increases are located at the official duration of the programmes. Nonetheless,
for these programmes, the highest hazards of graduation occur with about 4 semesters of delay
(the spikes at the last period are due to a cumulative effect, as δr16 represents the period [16,∞)).
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Figure 5: BMA posterior inference. Top 10 models according to posterior probability, for each
degree programme. Gray circles indicate covariate inclusion.

Table 2: MPPI of each covariate for the three analysed degree programmes.
Programme Sex Region Parents School Funding Top 10% Pref. Gap
Chemistry 0.11 0.27 0.14 0.12 0.06 0.12 0.47 0.51
Maths and Stats 0.63 0.17 0.46 0.73 0.14 0.90 0.81 0.76
Physics 0.08 0.09 0.09 0.09 0.03 0.05 0.23 0.17

5.2 Covariate selection

The main objective of our analysis is to identify risk factors related to delayed graduations and
dropout events. We tackle this as a variable selection problem, using a BMA approach to uncover
the most relevant covariates. Figure 5 shows the top 10 models, with the highest posterior prob-
abilities, for each degree programme. Importantly, across all degree programmes, the maximum
posterior probability associated to a single model is 0.570 (the null model with no covariates, in
the case of Physics). This suggests that a BMA strategy — where the uncertainty about covari-
ate selection is formally accounted for — seems more appropriate than selecting a single model.
For each covariate, marginal inclusion probabilities (MPPIs) are displayed in Table 2. Overall,
the highest MPPIs relate to the student’s application preference and the gap indicator (associated
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with β10 and β11, respectively). This is in line with the results in Figure 5, where these covariates
are typically included in the models with the highest posterior probabilities. Moreover, and per-
haps surprisingly, the source of funding (linked to β6, β7 and β8) appears to be the least important
covariate in this context. This is likely due to an overlap of information between this variable and
other socio-economic indicators (see Table 1). However, despite these similarities, results show
important variations across degree programmes. While most covariates appear to be relevant for
the Mathematics and Statistics programme, Chemistry and Physics favour sparser models.

5.3 Interpretation

The MPPIs displayed in Table 2 indicate which covariates have a clear effect on the university
outcomes and their associated temporal behaviour. Together with the covariate selection, it is also
important to consider the sign and the magnitude of the regression coefficients to assess specific
covariate effects on graduation and both types of dropouts. This determines whether a covariate
corresponds to a risk factor regarding the analysed outcomes. In particular, for graduations,
negative regression coefficients indicate risk factors (students graduate less and slower). For the
dropout events, those covariates with positive effects are risk factors (students tend to drop out
more and earlier).

From (11), the posterior distribution of each βrj is given by a point mass at zero (equal to
the probability of excluding the j-th covariate) and a continuous component (a mixture over the
posterior distributions of βrj given each model where the corresponding covariate is included).
Figure 6 summarises the continuous component of the posterior distribution by BMA estimates
for all regression coefficients (posterior medians and 95% highest posterior density intervals) and
all degree programmes. Some effects are consistent across different degree programmes. For
instance, in line with Figure 5 and Table 2, one of the strongest effects relate to the student’s
application preference (see β10). In general, students who applied as a first preference to these
degrees graduate more and faster (i.e. for graduations, the posterior distribution of β10 is concen-
trated on positive values). They also exhibit a lower rate of voluntary dropout, possibly linked to
a higher initial motivation. To put the magnitude of the effect into perspective, the odds for out-
come r = 1, 2, 3 versus no event are multiplied by a factor exp(βr 10) if the programme was the
student’s first preference. Whether or not the student had a gap between high school graduation
and university admission (β11) also has a strong influence on the academic outcomes for these
programmes. These gaps can, e.g., correspond to periods in which the student was preparing for
the admission test (after a low score in a previous year) or enrolled in a different programme.
Overall, this gap is linked to fewer and slower graduations. In addition, in each semester, this gap
corresponds to a higher risk of being expelled from Chemistry. The effects of other covariates
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are less stable across the programmes. Whereas the effect of the student’s sex (β1) is almost
negligible in Chemistry and Physics, female students in Mathematics and Statistics have a lower
risk of being expelled. This is consistent with the MPPI estimates in Table 2, which are low for
Chemistry and Physics.
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Figure 6: BMA estimates for regression coefficients, per degree programme and event type. Dots
are located at posterior medians and vertical segments represent the 95% highest posterior den-
sity interval. The following regression coefficients are defined for each event type (the subscript
r is omitted for ease of notation): β1 (sex: female), β2 (region: metropolitan area), β3 (parents’
education: with degree), β4 (high school: private), β5 (high school: subsidised private), β6 (fund-
ing: scholarship only), β7 (funding: scholarship and loan), β8 (funding: loan only), β9 (selection
score: top 10%), β10 (application preference: first) and β11 (gap after high school graduation:
yes).
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6 Concluding remarks

In this article, a simple but flexible competing risks survival model is employed for the modelling
of university outcomes (graduation or dropout). This is based on the Proportional Odds model
introduced in Cox (1972) and can be estimated by means of a multinomial logistic regression. The
suggested sampling model has been previously employed in the context of university outcomes,
but the structure of typical university outcomes data seriously complicates a maximum likelihood
analysis. Here, we use a Bayesian setting, where an appropriate prior distribution allows the
extraction of sensible information from the data. Adopting a hierarchical structure allows for the
derivation of a reasonably simple MCMC sampler for inference. The proposed methodology is
applied to a dataset on undergraduate students enrolled in the Pontificia Universidad Católica de
Chile (PUC) over the period 2000-2011.

As illustrated in Sections 2 and 5, there are strong levels of heterogeneity between different
programmes of the PUC. Hence, building a common model for the entire university is not rec-
ommended. For brevity, this article only presents the analysis of three science programmes for
which late graduations and dropouts are a major issue, but the methodology presented here can
be applied to all programmes. We formally consider model uncertainty in terms of the covariates
included in the model. In view of the posterior distribution on the model space, we conclude that
choosing a single model is not appropriate and that BMA provides more meaningful inference
in our context. In summary, our analysis uncovers strong evidence in favour of high applica-
tion preferences acting as a risk-mitigating factor in terms of delayed graduations and voluntary
dropout in the three analysed programmes. In contrast, having a gap between high school grad-
uation and university admission generally increases the risks associated to these events. The
performance in the selection test is also an important determinant for Mathematics and Statistics,
where good performance mitigates the risk of both types of dropout. Other factors, such as gen-
der and the region of residence, only appear to matter for some of the programmes. Covariates
related to funding sources do not appear to influence outcomes of any of the three programmes.

One limitation of our approach are potential violations to the proportional odds (PO) as-
sumption. While this assumption does not seem too unreasonable for some covariates and degree
programmes (e.g. preference and gap covariates in Mathematics and Statistics), this is less clear
in other cases (see Section E in the Supplementary Material for an approximate nonparametric
check). This is perhaps not that critical for those covariates that are not robustly associated with
the analysed outcomes (e.g. for Physics students, where the null model concentrates more than
50% of the posterior probability). Potential reasons for deviations from PO are unobserved con-
founders and time-varying covariate effects (e.g. if some of the variables recorded at admission
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might have a diminishing effect throughout time). In such cases, possible solutions would be to
keep the PO specification but to add an interaction effect between time and covariates (e.g. dif-
ferent effect magnitudes during the first year of admission) and to incorporate random effects in
order to account for unobserved sources of heterogeneity. This will be investigated in follow-up
analyses. However, it should be borne in mind that inference in such more general models might
well be challenging with the available sample sizes.

An issue that was not dealt with explicitly is that of missing covariate information. In this
analysis, we implicitly assumed that the missingness pattern can be ignored. It would be interest-
ing to deal with this issue more carefully in subsequent analysis.

An obvious extension of the model presented here is to allow for different covariates in the
modelling of the three risks within the same programme. This would substantially increase the
number of models in the model space, so the simple sampler implemented here is expected to per-
form poorly as it was only designed to cope with moderately large model spaces. In such a case,
more sophisticated sampling schemes such as the evolutionary stochastic search implemented in
Bottolo and Richardson (2010) could be employed.
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