We study fluctuations of the Wigner time delay for open (scattering) systems
which exhibit mixed dynamics in the classical limit. It is shown that in the
semiclassical limit the time delay fluctuations have a distribution that
differs markedly from those which describe fully chaotic (or strongly
disordered) systems: their moments have a power law dependence on a
semiclassical parameter, with exponents that are rational fractions. These
exponents are obtained from bifurcating periodic orbits trapped in the system.
They are universal in situations where sufficiently long orbits contribute. We
illustrate the influence of bifurcations on the time delay numerically using an
open quantum map.Comment: 9 pages, 3 figures, contribution to QMC200