9 research outputs found

    Thyroid cancer risk in Belarus among children and adolescents exposed to radioiodine after the Chornobyl accident

    Get PDF
    BACKGROUND: Previous studies showed an increased risk of thyroid cancer among children and adolescents exposed to radioactive iodines released after the Chornobyl (Chernobyl) accident, but the effects of screening, iodine deficiency, age at exposure and other factors on the dose-response are poorly understood. METHODS: We screened 11 970 individuals in Belarus aged 18 years or younger at the time of the accident who had estimated (131)I thyroid doses based on individual thyroid activity measurements and dosimetric data from questionnaires. The excess odds ratio per gray (EOR/Gy) was modelled using linear and linear-exponential functions. RESULTS: For thyroid doses \u3c5 \u3eGy, the dose-response was linear (n=85; EOR/Gy=2.15, 95% confidence interval: 0.81-5.47), but at higher doses the excess risk fell. The EOR/Gy was significantly increased among those with prior or screening-detected diffuse goiter, and larger for men than women, and for persons exposed before age 5 than those exposed between 5 and 18 years, although not statistically significant. A somewhat higher EOR/Gy was estimated for validated pre-screening cases. CONCLUSION: 10-15 years after the Chornobyl accident, thyroid cancer risk was significantly increased among individuals exposed to fallout as children or adolescents, but the risk appeared to be lower than in other Chornobyl studies and studies of childhood external irradiation

    Major Factors Affecting Incidence of Childhood Thyroid Cancer in Belarus after the Chernobyl Accident: Do Nitrates in Drinking Water Play a Role?

    Get PDF
    One of the major health consequences of the Chernobyl Nuclear Power Plant accident in 1986 was a dramatic increase in incidence of thyroid cancer among those who were aged less than 18 years at the time of the accident. This increase has been directly linked in several analytic epidemiological studies to iodine-131 (131I) thyroid doses received from the accident. However, there remains limited understanding of factors that modify the 131Irelated risk. Focusing on post-Chernobyl pediatric thyroid cancer in Belarus, we reviewed evidence of the effects of radiation, thyroid screening, and iodine deficiency on regional differences in incidence rates of thyroid cancer. We also reviewed current evidence on content of nitrate in groundwater and thyroid cancer risk drawing attention to high levels of nitrates in open well water in several contaminated regions of Belarus, i.e. Gomel and Brest, related to the usage of nitrogen fertilizers. In this hypothesis generating study, based on ecological data and biological plausibility, we suggest that nitrate pollution may modify the radiationrelated risk of thyroid cancer contributing to regional differences in rates of pediatric thyroid cancer in Belarus. Analytic epidemiological studies designed to evaluate joint effect of nitrate content in groundwater and radiation present a promising avenue of research and may provide useful insights into etiology of thyroid cancer

    30 years After the Chernobyl Nuclear Accident: Time for Reflection and Re-evaluation of Current Disaster Preparedness Plans

    No full text
    It has been 30 years since the worst accident in the history of the nuclear era occurred at the Chernobyl power plant in Ukraine close to densely populated urban areas. To date, epidemiological studies reported increased long-term risks of leukemia, cardiovascular diseases, and cataracts among cleanup workers and of thyroid cancer and non-malignant diseases in those exposed as children and adolescents. Mental health effects were the most significant public health consequence of the accident in the three most contaminated countries of Ukraine, Belarus, and the Russian Federation. Timely and clear communication with affected populations emerged as one of the main lessons in the aftermath of the Chernobyl nuclear accident

    Impact of Uncertainties in Exposure Assessment on Estimates of Thyroid Cancer Risk among Ukrainian Children and Adolescents Exposed from the Chernobyl Accident

    Get PDF
    <div><p>The 1986 accident at the Chernobyl nuclear power plant remains the most serious nuclear accident in history, and excess thyroid cancers, particularly among those exposed to releases of iodine-131 remain the best-documented sequelae. Failure to take dose-measurement error into account can lead to bias in assessments of dose-response slope. Although risks in the Ukrainian-US thyroid screening study have been previously evaluated, errors in dose assessments have not been addressed hitherto. Dose-response patterns were examined in a thyroid screening prevalence cohort of 13,127 persons aged <18 at the time of the accident who were resident in the most radioactively contaminated regions of Ukraine. We extended earlier analyses in this cohort by adjusting for dose error in the recently developed TD-10 dosimetry. Three methods of statistical correction, via two types of regression calibration, and Monte Carlo maximum-likelihood, were applied to the doses that can be derived from the ratio of thyroid activity to thyroid mass. The two components that make up this ratio have different types of error, Berkson error for thyroid mass and classical error for thyroid activity. The first regression-calibration method yielded estimates of excess odds ratio of 5.78 Gy<sup>−1</sup> (95% CI 1.92, 27.04), about 7% higher than estimates unadjusted for dose error. The second regression-calibration method gave an excess odds ratio of 4.78 Gy<sup>−1</sup> (95% CI 1.64, 19.69), about 11% lower than unadjusted analysis. The Monte Carlo maximum-likelihood method produced an excess odds ratio of 4.93 Gy<sup>−1</sup> (95% CI 1.67, 19.90), about 8% lower than unadjusted analysis. There are borderline-significant (<i>p = </i>0.101–0.112) indications of downward curvature in the dose response, allowing for which nearly doubled the low-dose linear coefficient. In conclusion, dose-error adjustment has comparatively modest effects on regression parameters, a consequence of the relatively small errors, of a mixture of Berkson and classical form, associated with thyroid dose assessment.</p></div
    corecore