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Abstract

The 1986 accident at the Chernobyl nuclear power plant remains the most serious nuclear accident in history, and excess
thyroid cancers, particularly among those exposed to releases of iodine-131 remain the best-documented sequelae. Failure
to take dose-measurement error into account can lead to bias in assessments of dose-response slope. Although risks in the
Ukrainian-US thyroid screening study have been previously evaluated, errors in dose assessments have not been addressed
hitherto. Dose-response patterns were examined in a thyroid screening prevalence cohort of 13,127 persons aged ,18 at
the time of the accident who were resident in the most radioactively contaminated regions of Ukraine. We extended earlier
analyses in this cohort by adjusting for dose error in the recently developed TD-10 dosimetry. Three methods of statistical
correction, via two types of regression calibration, and Monte Carlo maximum-likelihood, were applied to the doses that can
be derived from the ratio of thyroid activity to thyroid mass. The two components that make up this ratio have different
types of error, Berkson error for thyroid mass and classical error for thyroid activity. The first regression-calibration method
yielded estimates of excess odds ratio of 5.78 Gy21 (95% CI 1.92, 27.04), about 7% higher than estimates unadjusted for
dose error. The second regression-calibration method gave an excess odds ratio of 4.78 Gy21 (95% CI 1.64, 19.69), about
11% lower than unadjusted analysis. The Monte Carlo maximum-likelihood method produced an excess odds ratio of 4.93
Gy21 (95% CI 1.67, 19.90), about 8% lower than unadjusted analysis. There are borderline-significant (p = 0.101–0.112)
indications of downward curvature in the dose response, allowing for which nearly doubled the low-dose linear coefficient.
In conclusion, dose-error adjustment has comparatively modest effects on regression parameters, a consequence of the
relatively small errors, of a mixture of Berkson and classical form, associated with thyroid dose assessment.
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Introduction

The accident at the Chernobyl nuclear power plant remains

the most serious nuclear accident in history. Thyroid cancer was

the first cancer to be elevated among the exposed residents in

Ukraine and Belarus, within 5 years of the accident, and the

excess is particularly marked among those exposed in childhood

[1–4]. The thyroid cancer excess is thought to be largely the

result of release of radioactive iodine-131 (131I) from the

Chernobyl reactor.

In collaboration with the Institute of Endocrinology and

Metabolism, Kyiv, Ukraine and Columbia University, the U.S.
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National Cancer Institute initiated a cohort screening study of

children and adolescents exposed to Chernobyl fallout in Ukraine

to better understand the long-term health effects of exposure to

radioactive iodines [5]. Unlike many other studies of thyroid

cancer in relation to environmental exposure [6,7], this cohort

incorporates detailed thyroid activity measurements, and mass

estimates derived from a similar external Ukrainian sample,

crucial to estimates of dose. There have been a number of

analyses of this cohort [3,8], which document the significant

increased risk of thyroid cancer in relation to 131I thyroid dose. A

major source of uncertainty in estimation of low dose risk

concerns the extrapolation of risks at high dose and high dose-

rates to those at low doses and low dose-rates. Crucial to the

resolution of this area of uncertainty is consideration of both

systematic and random dosimetric errors in analyses of the

Chernobyl-exposed and other exposed groups. The problem of

allowing for errors in dose assessments when estimating dose-

response relationships has recently been the subject of much

research [9]. It is well recognized that measurement error can

alter substantially the shape of this relationship and hence the

derived study risk estimates [9]. Typically errors are assumed to

be of one of two types, classical or Berkson. Classical errors, in

which the measured doses are assumed to be distributed with

(independent) error around the true dose, generally result in a

downward bias of the dose-response parameter [9]. Berkson

errors, in which the true dose is randomly distributed around a

measured dose estimate, do not result in biased estimates of the

dose-response parameter for linear models, although for non-

linear models that is not the case [9]. Classical dose errors are

generally thought to characterize the errors in dose estimates in

the Japanese atomic bomb survivors [10], whereas Berkson errors

are thought to dominate the dose uncertainties in certain medical

studies [11]. In practice, errors associated with measurement of

doses are a mixture of classical and Berkson errors and each type

of dose error can include both a shared component, common to

all individuals within a group, and an unshared part, unique to

an individual within a cohort [12]. Kukush et al. [13] developed

a novel methodology for assessing dose error in a (simulated)

Chernobyl-exposed cohort, incorporating both Berkson errors

(relating to thyroid mass estimates), and classical errors (relating

to thyroid activity assessments). When dose errors are modest, a

commonly used method of dealing with dose error is to replace

the dose estimate in any regression with the expected true dose

given the measured dose estimate, a process termed regression

calibration [9]. When dose uncertainties are more substantial

full-likelihood methods may be indicated, in particular Monte

Carlo maximum likelihood integration (MCML) [12,14], and

Bayesian Markov Chain Monte Carlo (MCMC) [10].

The dose-response for prevalent thyroid cancers in the

Ukrainian-US screening cohort was previously analyzed [3]

using the original (TD-02) individual dose estimates, while the

dose response for incident thyroid cancer cases was analyzed [8]

using a modified version of TD-02, in which adjustments were

made to reflect an increased understanding of thyroid mass

measurements in the cohort. A further review has resulted in a

new set of thyroid dose estimates, referred to as TD-10 [15]. In

this paper we assess the impact on thyroid cancer risk of a

number of methods of adjustment for the effects of dose

uncertainty, in particular regression-calibration and MCML

procedures. Most analyses use the TD-10 dosimetry; we also

briefly compare our results with those of Tronko et al. based on

the TD-02 doses [3].

Data and Methods

Ethics Statement
The data were hosted at three collaborating institutions:

Institute of Endocrinology and Metabolism, Kyiv, Ukraine,

Columbia University/University of California San Francisco

(UCSF), and the National Cancer Institute (NCI). All subjects

signed an informed consent form, and the study was reviewed and

approved by the institutional review boards of the participating

institutions in both Ukraine and the United States. The data were

de-identified before transfer to the United States participating

institutions. The key to the data exists in Ukraine, but US

researchers did not have access to it at any point. Anonymized

data can be provided upon request with conditions agreeable to

the three parties (Institute of Endocrinology and Metabolism,

Kyiv, Ukraine, Columbia University/UCSF, NCI). At NCI, it has

to be formalized through the Technical Transfer Center.

Study data
The Ukrainian-US prevalence cohort includes 13,127 individ-

uals (44% of the 29,919 potentially available subjects originally

selected for the study [3]) who were less than 18 years old on April

26 1986. All cohort members were required to have had at least

one direct measurement of thyroid radioactivity between April 30

and June 30, 1986 and to have resided at the time of screening

(which was highly correlated with residence at the time of the

accident) in the northern areas of Ukraine (Kyiv city and oblast,

Zhytomyr, and Chernihiv oblasts), which were the most radioac-

tively contaminated territories in Ukraine as a result of the

Chernobyl accident. Thyroid activity measurements were made by

means of several types of gamma-counters held against the neck,

from which was derived (via subtraction of the background

radiation count and other variables) the 131I activity in the thyroid

gland. For 6 subjects a current (TD-10: see below) thyroid dose

could not be estimated; they were excluded from the main analysis

cohort for all analyses based on TD-10 doses, but were included

for analyses based on TD-02 doses. There were a total of 45

thyroid cancer cases, exactly as in the data of Tronko et al. [3].

Revised dose estimates
The first estimates of individual thyroid doses for all members of

the Ukrainian-US cohort were obtained in 2002 (TD-02). Along

with a description of the corresponding thyroid dose reconstruc-

tion system, the first dose estimates were published by Likhtarev

et al. [16]. For the second (TD-10) set of thyroid dose estimates

[15,17] the following improvements were carried out:

N A second round of interviews for all cohort members was

conducted so that detailed information on personal history

(relocation from the contaminated territory and consumption

of contaminated foods) could be clarified.

N Parameters of the dosimetry model were substantially

improved. They includes estimates of 131I ground deposition

on the Ukrainian territory using a new mesoscale model of

atmospheric transport of the radioactive materials released

during the Chernobyl accident; site-specific values of model

parameters derived from the available data on radionuclide

transport in the environment that were published after the

Chernobyl accident; evaluation of the contribution of the

incorporated radiocesiums to the signal read by the detectors.

N Oblast-specific thyroid mass estimates were derived using

measurements of thyroid volume performed during the 1990s

by the Sasakawa Memorial Health Foundation among

children and adolescents of Kyiv and Zhytomyr oblasts [18].

Thyroid Cancer Exposure Assessment Uncertainty
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The component of the reconstruction model dealing with the

input data resulting from direct individual measurement of thyroid

activity (Qmes
i ) and thyroid mass (Mmes

i ) has not been revised; this

revision is now underway [19,20].

Dose error model
The probabilistic models of thyroid mass and thyroid activity

are outlined in Appendix S1. These are applied to the current

(TD-10) set of dose estimates. The thyroid mass at the time of the

Chernobyl accident was estimated via population-average mea-

surements performed on children aged 5 to 16, taken within a few

years of the accident in Kyiv and Zhytomyr oblasts by the

Sasakawa Health Memorial foundation [18], supplemented with

autopsy measurements conducted on newborns and infants [19];

data for missing ages were obtained via interpolation or

extrapolation. The currently available estimates of thyroid mass

are those used by Likhtarov et al. [15]. The true values of the

thyroid mass are determined according to a Berkson measurement

error model. For the first regression-calibration method, adapted

from Kukush et al. [13], Supporting Information expression (S12)

is used to determine the likelihood of a given measured dose. For

the second regression-calibration method Supporting Information

expression (SS12) is used to determine the likelihood of the given

activity measurements. The measured activity is associated with a

multiplicative classical error model, which is determined by the

characteristics of the measuring instrument [55,56]. The dosim-

etry estimation system has a stochastic design to model shared

errors, and to account for uncertain dose-related parameters.

Using that system, certain members of the study team (IAL, VMS)

produced 1000 simulations of the posterior distribution of dose to

the thyroid for all study subjects. The profile likelihood was then

derived by integrating the likelihood over these 1000 dose

simulations. The two regression calibration methods are similar,

but the second makes slightly stronger assumptions on the

independence of certain dosimetric quantities, and a priori may

be regarded as the less plausible model; however, as noted in

Appendix S1, there is little evidence of correlation between thyroid

activity and mass of the sort that would invalidate the use of the

second model. We judge that it is important to assess the effects of

adjusting for dose error using a variety of assumptions and models

to determine the sensitivity of results to these assumptions. The

geometric standard deviation (GSD) was estimated from individual

assessments of measured activity. The models of dose error

generate models for the distribution of thyroid dose or activity in

these intervals, as detailed in Appendix S1. The results of fitting

these models to the dose and activity data for the current (TD-10)

dose data via maximum likelihood methods [21] are given in

Tables S1 and S2.

Thyroid cancer risk model
The primary statistical model used was a logistic model of the

odds ratio (OR), in which the probability of subject i with age at

screening a, gender s, age at exposure e at the time of the accident

(1986) and with true thyroid dose:

Dtr
i ~fiQ

tr
i =Mtr

i ð1Þ

(Qtr
i is the true thyroid 131I activity in kBq, Mtr

i is the true thyroid

mass in g, fi is a scaling constant) being a case of thyroid cancer is

given by:

exp b0zbs1sex~malez
PN

k~1

bk1ak{1ƒavak

� �
1zaD exp

cDzk½e{8�zt½a{22�
zy½a{e{14�zg1sex~male

� �� �

1z exp b0zbs1sex~malez
PN

k~1

bk1ak{1ƒavak

� �
1zaD exp

cDzk½e{8�zt½a{22�
zy½a{e{14�zg1sex~male

� �� � ð2Þ

[The age at exposure, e, and age at screening, a, were

approximately centered by subtracting off their approximate

mean values in the data, namely 8 and 22 years, respectively; this

facilitated convergence of the iteratively-reweighted least squares

algorithm used to maximize the likelihood [21].] In general only

one of the age or temporal adjustment parameters, k, t or y was

free to vary. As outlined in Appendix S1, we corrected for the

effect of errors in estimates of thyroid activity and mass using two

distinct regression calibration approaches and MCML. Using the

first regression calibration method, adapted from Kukush et al.

[13], lead us to substitute Dtr
i by E½Dtr

i jDmes
i � using Supporting

Information expression (S16), whereas in the second regression

calibration method we substituted Dtr
i by E½Dtr

i jQmes
i ,Mmes

i � using

Supporting Information expression (SS16); these estimates of dose

were then substituted in expression (2). All parameters were

estimated via maximum likelihood [21]. Appendix S1 also

contains further details of the MCML adjustment methods.

Results

Comparison of doses
We found generally good agreement between the TD-02 doses

used by Tronko et al. [3] and the new (TD-10) dose estimates,

although there was considerable scatter (Figures S1, S2). Figure S3

demonstrates that the dose is distributed very-nearly log-normally.

The details of the distribution of the GSD associated with errors in

the assessments of thyroid activity and mass are given in Table 1;

they are shown as a function of TD-10 dose in Figures 1–3. The

thyroid activity GSD cover a wide range,

exp½sQ,i�~1:11{10:03 , although apart from a wide scatter at

(2)

Table 1. Distribution of the geometric standard deviation
(GSD) of errors associated with measurements of thyroid
activity and of thyroid mass across individuals within the
cohort.

TD-10 dose
range (Gy) Range Mean Median 10%, 90%

Thyroid activity GSD ( exp½sQ,i �)

0–0.5 1.11–10.13 1.39 1.29 1.16, 1.56

.0.5–1.0 1.12–1.57 1.23 1.22 1.13, 1.33

.1.0–5.0 1.12–2.37 1.23 1.22 1.13, 1.31

.5.0–10.0 1.12–1.40 1.23 1.25 1.13, 1.29

.10.0 1.13–1.47 1.21 1.19 1.17, 1.26

Total 1.11–10.13 1.35 1.26 1.16, 1.49

Thyroid mass GSD ( exp½sM,i �)

0–0.5 1.28–1.41 1.39 1.40 1.34, 1.40

.0.5–1.0 1.28–1.41 1.39 1.40 1.33, 1.40

.1.0–5.0 1.28–1.41 1.38 1.40 1.33, 1.40

.5.0–10.0 1.28–1.41 1.39 1.40 1.33, 1.41

.10.0 1.28–1.41 1.38 1.39 1.34, 1.41

Total 1.28–1.41 1.39 1.40 1.34, 1.40

doi:10.1371/journal.pone.0085723.t001

Thyroid Cancer Exposure Assessment Uncertainty
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lower dose (,0.5 Gy), they are mostly under 1.5, with a mean

exp½sQ,i�~1:35. The variation in thyroid mass GSD is generally

even less than this (Figure 3), with a range of

exp½sM,i�~1:28{1:41 and a mean of exp½sM,i�~1:39

(Table 1).

Model fitting
Comparison of effects of various adjustments for dose

error in logistic model. Table 2 demonstrates that using the

logistic model (2), there is a highly statistically significant increasing

dose response (p,0.001) for all four sets of dose estimates and

models (TD02, unadjusted current (TD-10), current (TD-10) +
first/second type of regression-calibration adjustments and

MCML). The dose response using the first regression calibration

method, adapted from Kukush et al. [13], is shown in Figure 4, as

also the unadjusted dose response for comparison. Table 2

demonstrates that without adjustment for dose errors the EOR

was about 2% higher with the TD-10 doses, 5.38 Gy21 (95% CI

1.86, 21.01), than with the TD-02 doses, 5.25 Gy21 (95% CI 1.70,

27.45). The first regression-calibration method, adapted from

Kukush et al. [13], yielded estimates of the EOR of 5.78 Gy21

(95% CI 1.92, 27.04), about 7% higher than estimates unadjusted

for dose error. The second regression-calibration method yielded

an EOR of 4.78 Gy21 (95% CI 1.64, 19.69), about 11% lower

than TD10 estimates unadjusted for dose error. The MCML

method yielded an EOR of 4.93 Gy21 (95% CI 1.67, 19.90),

about 8% lower than the unadjusted TD10 dose estimates.

Table 2 demonstrates that there were borderline significant

indications of downward curvature in the dose response (e.g.,

p = 0.112 for curvature assessed using the first set of regression-

calibration-adjusted doses). The effect of allowing for this was to

nearly double the linear coefficient, from 5.78 Gy21 (95% CI 1.92,

27.04), to 9.72 Gy21 (95% CI 2.67, 94.31). However, the effect of

adjustment for dose error on the coefficients of the indicated

linear-exponential model were not much more substantial than for

the linear model. For example the linear coefficient of a linear-

exponential model without dose-error adjustment was 8.85 Gy21

(95% CI 2.60, 54.58), and after adjustment using the first

regression calibration method, adapted from Kukush et al. [13],

this became 9.72 Gy21 (95% CI 2.67, 94.31), an increase of 10%;

after adjustment using the second regression calibration method

this became 8.19 Gy21 (95% CI 2.33, 60.87), a decrease of 7%.

Table 3 demonstrates that the modifying effects of gender, age

at the time of the accident, age at screening and time since the

accident as modifiers of the radiation dose response were generally

not statistically significant (p.0.1) (see also Figure 5); this is the

case whichever set of dose estimates are employed (results not

shown). Table S3 reports the results of sensitivity analyses, in

Figure 1. Distribution of the geometric standard deviation
(GSD) of errors associated with assessments of thyroid activity
GSD as a function of TD-10 thyroid dose. Full dose range.
doi:10.1371/journal.pone.0085723.g001

Figure 2. Distribution of the geometric standard deviation
(GSD) of errors associated with assessments of thyroid activity
GSD as a function of TD-10 thyroid dose. Low dose range.
doi:10.1371/journal.pone.0085723.g002

Figure 3. Distribution of the geometric standard deviation
(GSD) of errors associated with assessments of thyroid mass
GSD as a function of TD-10 thyroid dose.
doi:10.1371/journal.pone.0085723.g003

Thyroid Cancer Exposure Assessment Uncertainty
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which certain variables were added to the background model, and

does not suggest that any improved the fit over age and sex (p$

0.1), nor was there generally any effect on EOR.

Discussion

Re-analysis of the latest follow-up of the Ukrainian-US thyroid

prevalence screening study, and using the most current (TD-10) set

of dose estimates, demonstrates that there is a highly statistically

significant increasing dose response (p,0.001), confirming the

Table 2. Analysis of curvature in fits of EOR model (2) with or without adjustment for dose errors using regression calibration, for
TD-10 doses.

Dose
Dose-response
model p-valuea

Linear ERR (a)
(Gy21) (+95% CI)

Exponential ERR (c)
(Gy21) (+95% CI)

Tronko et al.
(TD-02) dose

aD ,0.001b 5.25
(1.70, 27.45)

Tronko et al.
(TD-02) dose

aD
exp[cD]

0.084 9.13
(2.46, 111.1)

20.09
(20.23, 0.01)

TD-10 unadjusted
dose

aD ,0.001b 5.38
(1.86, 21.01)

TD-10 unadjusted
dose

aD
exp[cD]

0.104 8.85
(2.60, 54.58)

20.11
(20.29, 0.02)

1st regression calibration method
(Kukush et al.) adjusted dose

aD ,0.001b 5.78
(1.92, 27.04)

1st regression calibration method
(Kukush et al.) adjusted dose

aD
exp[cD]

0.112 9.72
(2.67, 94.31)

20.10
(20.28, 0.02)

2nd regression-calibration
method adjusted dose

aD ,0.001b 4.78
(1.64, 19.69)

2nd regression-calibration
method adjusted dose

aD
exp[cD]

0.101 8.19
(2.33, 60.87)

20.09
(20.25, 0.02)

Monte Carlo maximum
likelihood

aD ,0.001b 4.93
(1.67, 19.90)

aD
exp[cD]

0.102 7.97
(2.32, 49.81)

20.09
(20.26, 0.01)

All models have underlying rates adjusted for age (treated categorically) and gender. Unless otherwise stated all CI are profile-likelihood based.
aunless otherwise stated all p-values refer to the improvement in fit of the current row in the Table with that of the model fitted in the row immediately above.
bp-value of improvement in fit compared with a model with no dose terms.
doi:10.1371/journal.pone.0085723.t002

Figure 4. Dose response (+95 CI) for thyroid cancer in relation to TD-10 unadjusted dose, and regression-calibration-adjusted dose
(using 1st method, adapted from Kukush et al. [13]). The models are adjusted for age (treated categorically) and gender in the baseline. Dashed
red line shows odds ratio = 1.
doi:10.1371/journal.pone.0085723.g004

Thyroid Cancer Exposure Assessment Uncertainty

PLOS ONE | www.plosone.org 5 January 2014 | Volume 9 | Issue 1 | e85723



results of an earlier analysis of this dataset [3]. Adjustment of the

regression for dose errors yielded little change in radiation risk

estimates, as also did the change from the older (TD-02) to the

newer (TD-10) dosimetry.

A major source of uncertainty in estimates of low dose cancer

risk concerns the extrapolation of risks at high dose and high dose-

rates to those at low doses and low dose-rates. Crucial to the

resolution of this area of uncertainty is the flexible modeling of the

dose-response relationship and the importance of both systematic

and random dosimetric errors. The problem of allowing for errors

in dose assessments when estimating dose-response relationships

has recently been the subject of much interest in epidemiology [9].

It is well recognized that measurement error can alter substantially

the shape of this relationship [22]. Much work has been carried

out on assessing the impact of dosimetric error for Japanese atomic

bomb survivor data. In particular, Pierce et al. [23,24] carried out

a dose adjustment prior to the model fitting, allowing for random

dosimetric errors. A similar procedure was followed by Little et al.

[25–28]. This dose adjustment entails the substitution of the

‘‘estimated dose’’ by the expectation of the ‘‘true dose’’ given the

estimated one. This approach to measurement error correction is

an example of regression calibration, which as emphasized by

Carroll et al. [9], is an approximate method in non-linear dose-

effect relationships. It leads to reasonable adjusted point estimates

of the model parameters but does not fully take account of all the

variability induced by the measurement errors.

A Bayesian approach to the measurement-error problem has

been developed [29–31] which rests on the formulation of

conditional independence relationships between different model

components, following the general structure outlined by Clayton

[32]. In this approach three basic sub-models are distinguished

and linked: the disease model, the measurement model and the

exposure model. The general advantage of Bayesian methods, and

other techniques based on use of the full likelihood such as Monte-

Carlo Maximum Likelihood (MCML) [14] is that they take full

account of the impact of dose errors on regression estimates. An

adapted Bayesian method of correction for measurement error –

the two-stage Bayesian method – has been applied to the fitting of

generalized relative risk models to the Japanese atomic bomb

survivor cancer mortality data [10,33–35].

Bayesian methods offer ways of taking account both of

dosimetric uncertainties and modeling ones, for example in the

form and shape of the dose response and in temporal and age

Table 3. Results of fits of optimal excess relative risk model (2) (maximum likelihood fits and 95% profile CI), all based on TD-10
dose estimates adjusted using 1st regression calibration method (of Kukush et al.). All models have underlying rates adjusted for
age (treated categorically) and gender. Parameters are given (with 95% CI), with associated p-values.a Unless otherwise stated all CI
are profile-likelihood based.

Modelnumber Form ofexcess oddsratio model Parameters Estimates(+95% CI)and p-values p-value

1 aD a (Gy21) 5.78(1.92,27.04) ,0.001b

2 aDexp[cD] a (Gy21) 9.72(2.67,94.31) 0.112

c (Gy21) 20.10(20.28,0.02)

3 aDexp[cD +k(e –8)] a (Gy21) 12.54(3.33,73.93) 0.161

c (Gy21) 20.11(20.28,0.01)

k (years21) 20.14(20.37,0.06)

4 aDexp[cD +t(a –22)] a (Gy21) 11.46(3.17,62.58) 0.172c

c (Gy21) 20.11(20.28,0.01)

t (years21) 20.14(20.37,0.06)

5 aDexp[cD +y(a – e –14)] a (Gy21) 10.09(2.58,134.60) 0.874c

c (Gy21) 20.10(20.28,0.02)

y (years21) 0.04(20.51,0.59)

6 aDexp[cD +g1sex = male]d a (Gy21) 40.44(2119.7e,200.6e) 0.171c d

c (Gy21) 20.12(20.30,0.01)

g (years21) 22.21(26.47e,2.05e)

aUnless otherwise stated all p-values refer to improvement in fit of model immediately above indicated one in the Table.
bp-value for improvement in fit over null model (without linear dose term).
cp-value for improvement in fit over model 2, linear-exponential in dose.
dindications of lack of convergence.
eWald-based CI.
doi:10.1371/journal.pone.0085723.t003

Figure 5. Variation of excess relative risk with age at the time
of the accident (using 1st regression calibration method,
adapted from Kukush et al. [13]). Other details as for Figure 4.
doi:10.1371/journal.pone.0085723.g005
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trends. Bayesian Markov Chain Monte Carlo (MCMC) techniques

have previously been much used to assess uncertainties in

radiation risk [10,33–35]. Bayesian MCMC approaches have the

particular advantage that one has an arbitrarily large collection of

realizations of model parameters sampled from the posterior

distribution, so that uncertainty in any function of these

parameters, for example various measures of lifetime population

risk, can be directly evaluated by applying the function to the

posterior chain sample [10,33–35]. More limited assessment of

modeling uncertainties can also be dealt with using multi-model

inference (MMI) [36,37]. MMI methods have also been used in

radiation epidemiology [38–40]. Although not explicitly Bayesian,

MMI is somewhat related to Bayesian model-averaging and

related Bayesian techniques [41]; these Bayesian methods have the

advantage of assessing the parameter uncertainty distribution

more thoroughly than MMI, albeit at somewhat greater compu-

tational cost. However, in general Bayesian MCMC and other

full-likelihood methods such as MCML, employed here, offer a

more flexible and powerful framework for assessing dosimetric and

modeling uncertainty than MMI.

In the present case dose errors were modest, particularly at the

higher doses that will largely drive the trends with dose (Table 1,

Figures 1–3), so that regression calibration methods are likely to be

adequate [9], as confirmed by the results obtained using MCML –

the results of this latter method is close to those obtained using

either of the regression calibration methods, particularly the

second. The two regression-calibration methods we used for

adjusting for dose errors are similar, but the second makes slightly

stronger assumptions on the independence of certain dosimetric

quantities, and a priori may be regarded as the less plausible model;

however, as noted in Appendix S1, there is little evidence of

correlation between thyroid activity and mass of the sort that

would invalidate the use of the second model. Unusually, both

methods take account of mixed Berkson and classical errors in

dose, arising from the distinct measurement and estimation

associated with thyroid mass and 131I thyroid activity measure-

ments. However, neither method makes appreciable difference to

regression risk estimates, the first method leading to a 8% increase

in EOR, the second an 11% decrease, while the MCML method

results in a 8% decrease in EOR, changes which are clearly

minimal in relation to the substantial uncertainties (Table 2). The

reasons for the relatively modest impact of adjusting for dose error

are very largely a consequence of the fact that the errors relating to

the thyroid mass, are Berksonian, and as such would not be

expected to modify risk estimates [9,42], but that in any case both

these and the classical errors associated with measurements of

thyroid activity are relatively small (Table 1, Figures 1–3). Besides

the presence of Berkson measurement error, another possible

reason for the slightly different adjustments to the unadjusted risks

between the two regression-calibration methods is that within the

first such method, there is no assumption about independency of

true activity, Qtr
i , and measured thyroid gland mass, Mmes

i ,

whereas the other method relies on this assumption.

While it is generally to be expected that correction for the effects

of measurement error, particularly classical error, will be to

increase risks, this is not necessarily the case when, as here, errors

are modest (Table 1, Figures 1–3) and part of the error is of

Berkson type. In particular Schafer et al. [11] document a 8–13%

reduction in risks after adjustment for dose measurement errors in

a study of thyroid cancer in a group of Israeli children treated for

tinea capitis; the errors in this study were largely Berkson. In a

study of effects of air-pollution on lung function in a group of

Southern California children, adjusting for errors in position

(which were largely classical) led to a reduction of effect [43]. More

generally, it is known that non-differential misclassification of

exposure can bias risks away from the null, or induce a change in

sign of a regression trend [44].

The prevalence excess odds ratio that we derived of 5.78 Gy21

(95% CI 1.92, 27.04) using the first regression-calibration method

(Table 2) is somewhat higher than, but statistically consistent with

that which can be derived from the Japanese atomic bomb

survivors exposed to external radiation under the age of 20, 3.07

Gy21 (90% CI 2.14, 4.14) [35]. It is lower than (and again

statistically compatible with) the estimate of 7.7 Gy21 (95% CI 2.1,

28.7) derived from a pooled analysis of five childhood-exposed

groups [45]. However, the analyses of UNSCEAR [35] and Ron

et al. [45] are based on incidence data, and the interpretation is

therefore somewhat different from the prevalence risk that we

estimate. Ron et al. [45] also computed a pooled ERR/Gy

allowing for a non-zero ERR at zero dose (essentially allowing for

an additional offset in risk independent of radiation dose), which

was 3.8 Gy21 (95% CI 1.4, 10.7) [45].

An additional consideration in comparing risks derived here

with low-dose risk coefficients assessed elsewhere is the substantial

uncertainty in the shape of the dose response (in this cohort and

others), and the implied uncertainties this introduces into the

extrapolated low-dose risk. As was previously found using the older

(TD-02) dosimetry [3], we observed borderline significant

downward curvature (in other words, a progressive reduction

with increasing dose in the upward slope of ERR, rather than

negative slope) in the dose response (p = 0.101–0.112, Table 2), as

shown in Figure 4. The effect of allowing for this was to nearly

double the low-dose linear coefficient, from 5.78 Gy21 (95% CI

1.92, 27.04), to 9.72 Gy21 (95% CI 2.67, 94.31) (Table 2). The

thyroid is known to be one of the most radiosensitive organs [35],

in particular there is abundant literature documenting excess

thyroid cancer after exposure to external radiation in childhood

[45]. The pooled analysis of Ron et al. [45] indicated that in

general thyroid cancer exhibited a linear dose response, with

indications of a reduction of risk at high doses (.20 Gy). However,

Zablotska et al. observed a similar reduction to ours in risk above 5

Gy in a cohort of Chernobyl-exposed children and adolescents in

Belarus [4]. Cardis et al. also observed a turnover in dose response

above about 5 Gy in a case-control study of Chernobyl-exposed

children in Belarus and the Russian Federation [7]. Sigurdson

et al. [46] observed a reduction in the thyroid cancer dose

response, although at a much higher dose, of about 20 Gy, in a

group followed after treatment with radiotherapy for cancer in

childhood. As such, the turnover that we, Zablotska et al. [4] and

Cardis et al. [7] observe, is reasonably quantitatively consistent. It

is possible that this downturn reflects the effect of cell sterilization,

a well-known phenomenon in radiobiology and radio-epidemiol-

ogy [47], and which has been modelled in various other endpoints

[48-50]. The magnitude of the exponential coefficient, c, that we

obtain is between 20.11 Gy21 and 20.09 Gy21 (Table 2).

Deschavanne and Fertil [51] surveyed 42 in vitro studies that

assessed c for a variety of fibroblastic and other human cell lines,

with values ranging from 21.72 Gy21 to 20.30 Gy21, and a

median value of 20.65 Gy21. As such, our value looks a little too

small (too near 0). However, there may be compensating tissue

repopulation during the course of exposure to 131I from

Chernobyl, which would be expected to substantially reduce the

observed value of c [52].

There were no strong indications (p.0.1) of variation of relative

risk with age at exposure, age at screening, or time since exposure

(Table 3). There is considerable evidence that thyroid cancer

relative risk decreases with increasing age at exposure [35,45]; it is

not altogether obvious why this was observed only relatively

Thyroid Cancer Exposure Assessment Uncertainty
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weakly here (Figure 5). There are weaker indications of eventual

reductions of thyroid cancer relative risk with increasing time after

exposure among those exposed in childhood [45,53,54]. It is likely

that our cohort, with follow-up confined to a relatively narrow

time interval, 1998–2000, about 12–14 years after the Chernobyl

accident, lacks the power to detect such downturns in risk, which

in any case would not be expected until 15–19 years after the

accident [45].

Conclusions

The results of the paper are based on a screening study of the

most heavily exposed populations in Ukraine who were aged

under 18 years old at the time of the Chernobyl accident. The

paper extends previous analyses by using revised thyroid cancer

dose estimates. This paper addresses for the first time the errors

that are present in absorbed thyroid doses, and their effect on

thyroid cancer risk estimates; however, the effects of adjusting for

dose error are minimal, resulting in changes to cancer risk

estimates by between 211% and +7%. In relation to the other

uncertainties in the data, these relatively modest changes in risk

resulting from taking dose errors into account are largely a

consequence of the modest size of the errors and the fact that a

component (associated with measurement of thyroid mass) is of

Berkson type. There is borderline statistically significant reduction

in the upward slope of thyroid cancer risk at high doses.
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38. Schöllnberger H, Kaiser JC, Jacob P, Walsh L (2012) Dose-responses from

multi-model inference for the non-cancer disease mortality of atomic bomb
survivors. Radiat Environ Biophys 51: 165–178.

39. Walsh L, Kaiser JC (2011) Multi-model inference of adult and childhood

leukaemia excess relative risks based on the Japanese A-bomb survivors mortality
data (1950–2000). Radiat Environ Biophys 50: 21–35.

40. Walsh L, Schneider U (2013) A method for determining weights for excess
relative risk and excess absolute risk when applied in the calculation of lifetime

risk of cancer from radiation exposure. Radiat Environ Biophys 52: 135–145.

41. Wang C, Parmigiani G, Dominici F (2012) Bayesian effect estimation accounting
for adjustment uncertainty. Biometrics 68: 661–686.

42. Bateson TF, Wright JM (2010) Regression calibration for classical exposure
measurement error in environmental epidemiology studies using multiple local

surrogate exposures. Am J Epidemiol 172: 344–352.
43. Molitor J, Jerrett M, Chang CC, Molitor NT, Gauderman J, et al. (2007)

Assessing uncertainty in spatial exposure models for air pollution health effects

assessment. Environ Health Perspect 115: 1147–1153.
44. Dosemeci M, Wacholder S, Lubin JH (1990) Does nondifferential misclassifi-

cation of exposure always bias a true effect toward the null value? Am J Epidemiol
132: 746–748.

45. Ron E, Lubin JH, Shore RE, Mabuchi K, Modan B, et al. (1995) Thyroid

cancer after exposure to external radiation: a pooled analysis of seven studies.
Radiat Res 141: 259–277.

46. Sigurdson AJ, Ronckers CM, Mertens AC, Stovall M, Smith SA, et al. (2005)
Primary thyroid cancer after a first tumour in childhood (the Childhood Cancer

Survivor Study): a nested case-control study. Lancet 365: 2014–2023.
47. United Nations Scientific Committee on the Effects of Atomic Radiation

(UNSCEAR) (1993) Sources and effects of ionizing radiation. UNSCEAR 1993

report to the General Assembly, with scientific annexes. New York: United
Nations. 1–922.

48. Little MP, Weiss HA, Boice JD Jr, Darby SC, Day NE, et al. (1999) Risks of
leukemia in Japanese atomic bomb survivors, in women treated for cervical

cancer, and in patients treated for ankylosing spondylitis. Radiat Res 152: 280–

292.
49. Little MP, Charles MW (1997) The risk of non-melanoma skin cancer incidence

in the Japanese atomic bomb survivors. Int J Radiat Biol 71: 589–602.
50. Thomas DC, Blettner M, Day NE (1992) Use of external rates in nested case-

control studies with application to the International Radiation Study of Cervical
Cancer Patients. Biometrics 48: 781–794.

51. Deschavanne PJ, Fertil B (1996) A review of human cell radiosensitivity in vitro.

Int J Radiat Oncol Biol Phys 34: 251–266.
52. Sachs RK, Brenner DJ (2005) Solid tumor risks after high doses of ionizing

radiation. Proc Natl Acad Sci USA 102: 13040–13045.
53. Shore RE, Hildreth N, Dvoretsky P, Andresen E, Moseson M, et al. (1993)

Thyroid cancer among persons given X-ray treatment in infancy for an enlarged

thymus gland. Am J Epidemiol 137: 1068–1080.
54. Lundell M, Hakulinen T, Holm L-E (1994) Thyroid cancer after radiotherapy

for skin hemangioma in infancy. Radiat Res 140: 334–339.
55. Likhtarev IA, Gulko GM, Sobolev BG, Kairo IA, Pröhl G, et al. (1995)
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