7,667 research outputs found

    Predatory Bacteria: A Potential Ally against Multidrug-Resistant Gram-Negative Pathogens

    Get PDF
    Multidrug-resistant (MDR) Gram-negative bacteria have emerged as a serious threat to human and animal health. Bdellovibrio spp. and Micavibrio spp. are Gram-negative bacteria that prey on other Gram-negative bacteria. In this study, the ability of Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus to prey on MDR Gram-negative clinical strains was examined. Although the potential use of predatory bacteria to attack MDR pathogens has been suggested, the data supporting these claims is lacking. By conducting predation experiments we have established that predatory bacteria have the capacity to attack clinical strains of a variety of ß-lactamase-producing, MDR Gram-negative bacteria. Our observations indicate that predatory bacteria maintained their ability to prey on MDR bacteria regardless of their antimicrobial resistance, hence, might be used as therapeutic agents where other antimicrobial drugs fail. © 2013 Kadouri et al

    Unwinding of a cholesteric liquid crystal and bidirectional surface anchoring

    Get PDF
    We examine the influence of bidirectional anchoring on the unwinding of a planar cholesteric liquid crystal induced by the application of a magnetic field. We consider a liquid crystal layer confined between two plates with the helical axis perpendicular to the substrates. We fixed the director twist on one boundary and allow for bidirectional anchoring on the other by introducing a high-order surface potential. By minimizing the total free energy for the system, we investigate the untwisting of the cholesteric helix as the liquid crystal attempts to align with the magnetic field. The transitions between metastable states occur as a series of pitchjumps as the helix expels quarter or half-turn twists, depending on the relative sizes of the strength of the surface potential and the bidirectional anchoring. We show that secondary easy axis directions can play a significant role in the unwinding of the cholesteric in its transition towards a nematic, especially when the surface anchoring strength is large

    L-Band H Polarized Microwave Emission During the Corn Growth Cycle

    Get PDF
    Hourly L-band (1.4 GHz) horizontally (H) polarized brightness temperatures (T(sub B))'s measured during five episodes (more than two days of continuous measurements) of the 2002 corn growth cycle are analyzed. These T(sub B)'s measurements were acquired as a part of a combined active/passive microwave field campaign, and were obtained at five incidence and three azimuth angles relative to the row direction. In support of this microwave data collection, intensive ground sampling took place once a week. Moreover, the interpretation of the hourly T(sub B)'s could also rely on the data obtained using the various automated instruments installed in the same field. In this paper, the soil moisture and temperature measured at fixed time intervals have been employed as input for the tau-omega model to reproduce the hourly T(sub B). Through the calibration of the vegetation and surface roughness parameterizations, the impact of the vegetation morphological changes on the microwave emission and the dependence of the soil surface roughness parameter, h(sub r), on soil moisture are investigated. This analysis demonstrates that the b parameter, appearing in the representation of the canopy opacity, has an angular dependence that varies throughout the growing period and also that the parameter hr increases as the soil dries in a portion of the dry-down cycle. The angular dependence of the b parameter imposes the largest uncertainty on T(sub B) simulations near senescence as the response of b to the incidence is also affected by the crop row orientation. On the other hand, the incorporation of a soil moisture dependent h(sub r) parameterization was responsible for the largest error reduction of T(sub B) simulations in the early growth cycle

    A cross validation of Consumer-Based Brand Equity (CBBE) with Private Labels in Spain

    Get PDF
    Molinillo,S., Ekinci, Y., Japutra, A. (2014)'A cross validation of Consumer-Based Brand Equity (CBBE) with Private Labels in Spain'. in Martínez-López, Gázquez-Abad, J.C. and Sethuraman, R. J.A. (eds.) Advances in National Brand and Private Label Marketing. Second International Conference, 2015. Springer Proceedings in Business and Economics, pp. 113-125In recent years a number of Consumer-Based Brand Equity (CBBE) models and measurement scales have been introduced in the branding literature. However, examinations of brand equity in Private Labels (PL) are rather limited. This study aims to compare the validity of the two prominent CBBE models those introduced by Yoo and Donthu (2001) and Nam et al. (2011). In order to test the models and make this comparison, the study collected data from 236 respondents who rated private labels in Spain. A list of 30 different fashion and sportswear PL was introduced to respondents. These brands do not make any reference to the retail store in which they are sold. Research findings suggest that the extended CBBE model introduced by Nam et al. (2011) and Ciftci et al. (2014) is more reliable and valid than Yoo and Donthu’s model for assessing PL. Theoretical contributions and managerial implications are discussed.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    The mu problem and sneutrino inflation

    Get PDF
    We consider sneutrino inflation and post-inflation cosmology in the singlet extension of the MSSM with approximate Peccei-Quinn(PQ) symmetry, assuming that supersymmetry breaking is mediated by gauge interaction. The PQ symmetry is broken by the intermediate-scale VEVs of two flaton fields, which are determined by the interplay between radiative flaton soft masses and higher order terms. Then, from the flaton VEVs, we obtain the correct mu term and the right-handed(RH) neutrino masses for see-saw mechanism. We show that the RH sneutrino with non-minimal gravity coupling drives inflation, thanks to the same flaton coupling giving rise to the RH neutrino mass. After inflation, extra vector-like states, that are responsible for the radiative breaking of the PQ symmetry, results in thermal inflation with the flaton field, solving the gravitino problem caused by high reheating temperature. Our model predicts the spectral index to be n_s\simeq 0.96 due to the additional efoldings from thermal inflation. We show that a right dark matter abundance comes from the gravitino of 100 keV mass and a successful baryogenesis is possible via Affleck-Dine leptogenesis.Comment: 27 pages, no figures, To appear in JHE

    STK295900, a Dual Inhibitor of Topoisomerase 1 and 2, Induces G<inf>2</inf> Arrest in the Absence of DNA Damage

    Get PDF
    STK295900, a small synthetic molecule belonging to a class of symmetric bibenzimidazoles, exhibits antiproliferative activity against various human cancer cell lines from different origins. Examining the effect of STK295900 in HeLa cells indicates that it induces G2 phase arrest without invoking DNA damage. Further analysis shows that STK295900 inhibits DNA relaxation that is mediated by topoisomerase 1 (Top 1) and topoisomerase 2 (Top 2) in vitro. In addition, STK295900 also exhibits protective effect against DNA damage induced by camptothecin. However, STK295900 does not affect etoposide-induced DNA damage. Moreover, STK295900 preferentially exerts cytotoxic effect on cancer cell lines while camptothecin, etoposide, and Hoechst 33342 affected both cancer and normal cells. Therefore, STK295900 has a potential to be developed as an anticancer chemotherapeutic agent. © 2013 Kim et al

    Holographic three-point functions of semiclassical states

    Get PDF
    We calculate the holographic three-point functions in N = 4 super-Yang-Mills theory in the case when two of the operators are semiclassical and one is dual to a supergravity mode. We further discuss the transition to the regime when all three operators are semiclassical.Comment: 17 pages, 3 figures; v2: refs. added, discussion in sec. 2.1 expanded; v3: misprint in (2.28) corrected, published versio

    Characterization of Shewanella oneidensis MtrC: a cell-surface decaheme cytochrome involved in respiratory electron transport to extracellular electron acceptors

    Get PDF
    MtrC is a decaheme c-type cytochrome associated with the outer cell membrane of Fe(III)-respiring species of the Shewanella genus. It is proposed to play a role in anaerobic respiration by mediating electron transfer to extracellular mineral oxides that can serve as terminal electron acceptors. The present work presents the first spectropotentiometric and voltammetric characterization of MtrC, using protein purified from Shewanella oneidensis MR-1. Potentiometric titrations, monitored by UV–vis absorption and electron paramagnetic resonance (EPR) spectroscopy, reveal that the hemes within MtrC titrate over a broad potential range spanning between approximately +100 and approximately -500 mV (vs. the standard hydrogen electrode). Across this potential window the UV–vis absorption spectra are characteristic of low-spin c-type hemes and the EPR spectra reveal broad, complex features that suggest the presence of magnetically spin-coupled low-spin c-hemes. Non-catalytic protein film voltammetry of MtrC demonstrates reversible electrochemistry over a potential window similar to that disclosed spectroscopically. The voltammetry also allows definition of kinetic properties of MtrC in direct electron exchange with a solid electrode surface and during reduction of a model Fe(III) substrate. Taken together, the data provide quantitative information on the potential domain in which MtrC can operate

    Lifshitz spacetimes from AdS null and cosmological solutions

    Full text link
    We describe solutions of 10-dimensional supergravity comprising null deformations of AdS5×S5AdS_5\times S^5 with a scalar field, which have z=2z=2 Lifshitz symmetries. The bulk Lifshitz geometry in 3+1-dimensions arises by dimensional reduction of these solutions. The dual field theory in this case is a deformation of the N=4 super Yang-Mills theory. We discuss the holographic 2-point function of operators dual to bulk scalars. We further describe time-dependent (cosmological) solutions which have anisotropic Lifshitz scaling symmetries. We also discuss deformations of AdS×XAdS\times X in 11-dimensional supergravity, which are somewhat similar to the solutions above. In some cases here, we expect the field theory duals to be deformations of the Chern-Simons theories on M2-branes stacked at singularities.Comment: Latex, 29pgs, v3. references, minor clarifications (subsection on Lifshitz geometry seen by scalar probes) added, to appear in JHE

    Magnetic resonance peak and nonmagnetic impurities

    Full text link
    Nonmagnetic Zn impurities are known to strongly suppress superconductivity. We review their effects on the spin excitation spectrum in YBa2Cu3O7\rm YBa_2Cu_3O_{7}, as investigated by inelastic neutron scattering measurements.Comment: Proceedings of Mato Advanced Research Workshop BLED 2000. To appear in Nato Science Series: B Physic
    corecore