9 research outputs found

    Frequency-selective spin-wave propagation in magnonic waveguide with a local laser-heated region

    Get PDF
    This is the final version. Available from the American Physical Society via the DOI in this record. We report on the spin-wave propagation along a magnonic waveguide with a local area of decreased magnetization, which is induced by heating produced with a focused laser spot. A phase-sensitive Brillouin light scattering technique is used to image how the spin wave propagates along the waveguide with a local heat landscape. Frequency-selective signal propagation along the waveguide is demonstrated. Micromagnetic simulations reveal intermodal interference variation in the region after the heated area. The proposed way to reconfigure the magnetization landscape can be used in magnonic devices with frequency-selective spin-wave transport.Russian Science Foundatio

    Analyzing the Protein Assembly and Dynamics of the Human Spliceosome with SILAC

    No full text
    Quantitative mass spectrometry has become an indispensable tool in proteomic studies. Numerous methods are available and can be applied to approach different issues. In most studies these issues include the quantitative comparison of different cell states, the identification of specific interaction partners or determining degrees of posttranslational modification. In this chapter we describe a SILAC-based quantification in order to analyze dynamic protein changes during the assembly of the human spliceosome on a pre-mRNA in vitro. We provide protocols for assembly of spliceosomes on pre-mRNA (including generation of pre-mRNAs and preparation of nuclear extracts), quantitative mass spectrometry (SILAC labeling, sample preparation), and data analysis to generate timelines for the dynamic protein assembly

    Spatiotemporal Dynamics of Virus Infection Spreading in Tissues

    No full text
    Virus spreading in tissues is determined by virus transport, virus multiplication in host cells and the virus-induced immune response. Cytotoxic T cells remove infected cells with a rate determined by the infection level. The intensity of the immune response has a bell-shaped dependence on the concentration of virus, i.e., it increases at low and decays at high infection levels. A combination of these effects and a time delay in the immune response determine the development of virus infection in tissues like spleen or lymph nodes. The mathematical model described in this work consists of reaction-diffusion equations with a delay. It shows that the different regimes of infection spreading like the establishment of a low level infection, a high level infection or a transition between both are determined by the initial virus load and by the intensity of the immune response. The dynamics of the model solutions include simple and composed waves, and periodic and aperiodic oscillations. The results of analytical and numerical studies of the model provide a systematic basis for a quantitative understanding and interpretation of the determinants of the infection process in target organs and tissues from the image-derived data as well as of the spatiotemporal mechanisms of viral disease pathogenesis, and have direct implications for a biopsy-based medical testing of the chronic infection processes caused by viruses, e.g. HIV, HCV and HBV.The research was funded by the Russian Science Foundation (Grant no. 15-11-00029) to G.B., A.M., V.V. A.M. was also partially supported by a grant from the Spanish Ministry of Economy and Competitiveness and FEDER (Grant no. SAF2013-46077-R). S.T. and V.V. were also partially supported by FONDECYT (Chile) project 1150480. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
    corecore