13 research outputs found

    Derivation of an integral of Boros and Moll via convolution of Student t-densities

    Full text link
    We show that the evaluation of an integral considered by Boros and Moll is a special case of a convolution result about Student t-densities obtained by the authors in 2008

    The Moments of the Hydrogen Atom by the Method of Brackets

    No full text
    Expectation values of powers of the radial coordinate in arbitrary hydrogen states are given, in the quantum case, by an integral involving the associated Laguerre function. The method of brackets is used to evaluate the integral in closed-form and to produce an expression for this average value as a finite sum

    Multiwavelength studies of MHD waves in the solar chromosphere: An overview of recent results

    Get PDF
    The chromosphere is a thin layer of the solar atmosphere that bridges the relatively cool photosphere and the intensely heated transition region and corona. Compressible and incompressible waves propagating through the chromosphere can supply significant amounts of energy to the interface region and corona. In recent years an abundance of high-resolution observations from state-of-the-art facilities have provided new and exciting ways of disentangling the characteristics of oscillatory phenomena propagating through the dynamic chromosphere. Coupled with rapid advancements in magnetohydrodynamic wave theory, we are now in an ideal position to thoroughly investigate the role waves play in supplying energy to sustain chromospheric and coronal heating. Here, we review the recent progress made in characterising, categorising and interpreting oscillations manifesting in the solar chromosphere, with an impetus placed on their intrinsic energetics.Comment: 48 pages, 25 figures, accepted into Space Science Review

    Factors affecting body temperatures of toads

    Full text link
    Factors influencing levels and rates of variation of body temperature ( T b ) in montane Bufo boreas boreas and in lowland Bufo boreas halophilus were investigated as an initial step toward understanding the role of natural thermal variation in the physiology and energetics of these ectothermic animals. Body temperatures of boreas can vary 25–30° C over 24-h periods. Such variation is primarily due to both nocturnal and diurnal activity and the physical characteristics of the montane environment. Bufo boreas halophilus are primarily nocturnal except during breeding and are voluntarily active at body temperatures ranging between 10 and 25° C. Despite variation in T b encountered in the field, boreas select a narrow range of T b in a thermal gradient, averaging 23.5 and 26.2° C for fasted individuals maintained under field conditions or acclimated to 20° C, respectively. In a thermal gradient the mean T b of fasted halophilus acclimated to 20° C is 23.9° C. Skin color of boreas varies in the field from very dark to light. The dark skins absorb approximately 4% more radiation than the light ones. Light colored boreas should absorb approximately 5% more radiation than similarly colored halophilus . Evaporative water losses increase directly with skin temperatures and vapor pressure deficit in both subspecies. Larger individuals heat and cool more slowly than smaller ones. Calculation of an enery budget for boreal toads suggests that they could sit in direct sunlight for long periods without fatally overheating, providing the skin was continually moist.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47722/1/442_2004_Article_BF00344732.pd

    Evolution of the Fine Structure of Magnetic Fields in the Quiet Sun: Observations from Sunrise/IMaX and Extrapolations

    No full text
    Observations with the balloon-borne Sunrise/Imaging Magnetograph eXperiment (IMaX) provide high spatial resolution (roughly 100 km at disk center) measurements of the magnetic field in the photosphere of the quiet Sun. To investigate the magnetic structure of the chromosphere and corona, we extrapolate these photospheric measurements into the upper solar atmosphere and analyze a 22-minute long time series with a cadence of 33 seconds. Using the extrapolated magnetic-field lines as tracer, we investigate temporal evolution of the magnetic connectivity in the quiet Sun’s atmosphere. The majority of magnetic loops are asymmetric in the sense that the photospheric field strength at the loop foot points is very different. We find that the magnetic connectivity of the loops changes rapidly with a typical connection recycling time of about 3±1 minutes in the upper solar atmosphere and 12±4 minutes in the photosphere. This is considerably shorter than previously found. Nonetheless, our estimate of the energy released by the associated magnetic-reconnection processes is not likely to be the sole source for heating the chromosphere and corona in the quiet Sun

    Hormonal heterogeneity of endometrial cancer

    No full text

    A New View of the Solar Interface Region from the Interface Region Imaging Spectrograph (IRIS)

    No full text
    corecore