46 research outputs found

    КЛАССИФИКАЦИЯ НАРУШЕНИЙ ФУНКЦИОНАЛЬНОЙ АКТИВНОСТИ МОЗГА У БОЛЬНЫХ С ОПУХОЛЯМИ ГОЛОВНОГО МОЗГА

    Get PDF
    This paper is devoted to the automatic classification of functional disorders of brain activity in patients with brain tumors on the basis of the reference groups. The test of statistical hypotheses set made crisp classification. Functional activity of the brain abnormality is assessed indicators of the frequency spectrum of the EEG. We describe the scheme of the algorithm and an analysis of the results. The publication is intended for IT-professionals and clinicians who are actively applying them in their work. Статья посвящена автоматической классификации нарушений функциональной активности мозга у больных с опухолями головного мозга на основе эталонных групп. Проверкой статистических гипотез устанавливается четкость выполненной классификации. Функциональную активность мозга оценивают посредством индикаторов аномальностей частотного спектра электроэнцефалограммы. Описана схема алгоритма, и представлен анализ получаемых результатов. Публикация рассчитана на специалистов по информационным технологиям и клиницистов, активно применяющих их в своей работе.

    Berezinians, Exterior Powers and Recurrent Sequences

    Full text link
    We study power expansions of the characteristic function of a linear operator AA in a pqp|q-dimensional superspace VV. We show that traces of exterior powers of AA satisfy universal recurrence relations of period qq. `Underlying' recurrence relations hold in the Grothendieck ring of representations of \GL(V). They are expressed by vanishing of certain Hankel determinants of order q+1q+1 in this ring, which generalizes the vanishing of sufficiently high exterior powers of an ordinary vector space. In particular, this allows to explicitly express the Berezinian of an operator as a rational function of traces. We analyze the Cayley--Hamilton identity in a superspace. Using the geometric meaning of the Berezinian we also give a simple formulation of the analog of Cramer's rule.Comment: 35 pages. LaTeX 2e. New version: paper substantially reworked and expanded, new results include

    Quasiparticle RPA with finite rank approximation for Skyrme interactions

    Full text link
    A finite rank separable approximation for the particle-hole RPA calculations with Skyrme interactions is extended to take into account the pairing. As an illustration of the method energies and transition probabilities for the quadrupole and octupole excitations in some O, Ar, Sn and Pb isotopes are calculated. The values obtained within our approach are very close to those that were calculated within QRPA with the full Skyrme interaction. They are in reasonable agreement with experimental data.Comment: 20 pages, 1 figure, submitted to Phys.Rev.

    Launch of the Space experiment PAMELA

    Full text link
    PAMELA is a satellite borne experiment designed to study with great accuracy cosmic rays of galactic, solar, and trapped nature in a wide energy range protons: 80 MeV-700 GeV, electrons 50 MeV-400 GeV). Main objective is the study of the antimatter component: antiprotons (80 MeV-190 GeV), positrons (50 MeV-270 GeV) and search for antimatter with a precision of the order of 10^-8). The experiment, housed on board the Russian Resurs-DK1 satellite, was launched on June, 15, 2006 in a 350*600 km orbit with an inclination of 70 degrees. The detector is composed of a series of scintillator counters arranged at the extremities of a permanent magnet spectrometer to provide charge, Time-of-Flight and rigidity information. Lepton/hadron identification is performed by a Silicon-Tungsten calorimeter and a Neutron detector placed at the bottom of the device. An Anticounter system is used offline to reject false triggers coming from the satellite. In self-trigger mode the Calorimeter, the neutron detector and a shower tail catcher are capable of an independent measure of the lepton component up to 2 TeV. In this work we describe the experiment, its scientific objectives and the performance in the first months after launch.Comment: Accepted for publication on Advances in Space Researc

    PAMELA - A Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics

    Get PDF
    The PAMELA experiment is a satellite-borne apparatus designed to study charged particles in the cosmic radiation with a particular focus on antiparticles. PAMELA is mounted on the Resurs DK1 satellite that was launched from the Baikonur cosmodrome on June 15th 2006. The PAMELA apparatus comprises a time-of-flight system, a magnetic spectrometer, a silicon-tungsten electromagnetic calorimeter, an anticoincidence system, a shower tail catcher scintillator and a neutron detector. The combination of these devices allows antiparticles to be reliably identified from a large background of other charged particles. This paper reviews the design, space qualification and on-ground performance of PAMELA. The in-orbit performance will be discussed in future publications.The PAMELA experiment is a satellite-borne apparatus designed to study charged particles in the cosmic radiation with a particular focus on antiparticles. PAMELA is mounted on the Resurs DK1 satellite that was launched from the Baikonur cosmodrome on June 15th 2006. The PAMELA apparatus comprises a time-of-flight system, a magnetic spectrometer, a silicon-tungsten electromagnetic calorimeter, an anticoincidence system, a shower tail catcher scintillator and a neutron detector. The combination of these devices allows antiparticles to be reliably identified from a large background of other charged particles. This paper reviews the design, space qualification and on-ground performance of PAMELA. The in-orbit performance will be discussed in future publications

    The high energy cosmic ray particle spectra measurements with the PAMELA calorimeter

    Get PDF
    Abstract Up until now there has been limited, contradictive data on the high energy range of the cosmic ray electron-positron, proton and helium spectra. Due to the limitations of the use of a magnetic spectrometer, over 8 years experimental data was processed using information from a sampling electro-magnetic calorimeter, a neutron detector and scintillator detectors. The use of these devices allowed us to successfully obtain the high energy cosmic ray particle spectra measurements. The results of this study clarify previous findings and greaten our understanding of the origin of cosmic rays

    PAMELA Observation of the 2012 May 17 GLE Event

    Get PDF
    The PAMELA (Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics) satellite-borne experiment has been collecting data in orbit since July 2006, providing accurate measurements of the energy spectra and composition of the cosmic radiation from a few hundred MeVn up to hundred GeVn. This wide interval of measured energies makes PAMELA a unique instrument for Solar Energetic Particle (SEP) observations. Not only does it span the energy range between the ground-based neutron monitor data and the observations of SEPs from space, but also PAMELA carries out the first direct measurements of the composition for the highest energy SEP events, including those causing Ground Level Enhancements (GLEs). PAMELA has registered many SEP events in solar cycle 24 including the 2012 May 17 GLE event (GLE 71), offering unique opportunities to address the question of high-energy SEP origin. Experimental performances and preliminary results on the 2012 May 17 events will be presented. We will discuss the derived particle injection time and compare with other time scales at the Sun including the flare and CME onset times

    Formation of thin silicide films in spraying chromium on the heated substrate of (100) silicon

    No full text
    15.00; Translated from Russian (Fiz. Khim. Obrab. Mater. 1985 v. 19(3) p. 111-115)SIGLEAvailable from British Library Document Supply Centre- DSC:9023.19(VR--3137)T / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore