369 research outputs found

    Proposal of a holistic framework to support sustainability of new product innovation processes

    Get PDF
    UIDB/00667/2020The survival of companies in globalized and highly competitive markets, heavily depends on their ability to innovate through the creation of new products and/or services, supported by sustainable processes to prevent business failure. There are many factors regarding the interface company/stakeholders/market at all hierarchical levels, which have a major contribution to sustain innovation in processes regarding the creation of new products and services. A holistic approach of all these factors, as a whole, has not been a subject of scientific research conducting to the necessity of creating a proposal of a framework that can be integrated and systemic. Thus, this paper aims to propose a functional holistic model, which integrates the strategic, organizational and operational levels regarding market business and company interaction, as well as the set of factors to take into account to guarantee assurance that innovative processes are sustained, when new products and/or services are created or improved. Conducted through an investigation of the state of the art, by literature review, a comprehensive and integrated conceptual model was built in a deductive-inductive way. Then, the conceptual model was validated through four case studies. Finally, it was found that the conceptual framework became functional, because its applicability has been successfully tested in a business environment. As a result, the tool developed here, can be useful to measure and evaluate projects dedicated to companies that innovate in a sustainable way.publishersversionpublishe

    Magnetocaloric Effect And Evidence Of Superparamagnetism In Gda L2 Nanocrystallites: A Magnetic-structural Correlation

    Get PDF
    The correlation between structural and magnetic properties of GdAl2, focusing on the role played by the disorder in magnetic ordering and how it influences the magnetocaloric effect (MCE) are discussed. Micrometric-sized particles, consisting of nanocrystallites embedded in an amorphous matrix, were prepared by a mechanical milling technique and characterized by means of x-ray diffraction, scanning and high-resolution transmission electron microscopy as well as magnetic measurements as a function of an applied external magnetic field and temperature. The results show that the average particle size is just slightly diminished (≈7%) with the milling time (between 3 and 13 h), whereas the average crystallite size undergoes an expressive reduction (≈43%). For long milling times, structural disorders mostly associated with crystallite size singularly affect the magnetic properties, leading to a large tablelike MCE in the temperature range between 30 and 165 K. Below 30 K, nanocrystallites with dimensions below a given critical size cause an enhancement in the magnetic entropy change related to superparamagnetic behavior. In contrast, for low milling times, relative cooling power values are improved. These striking features along with the small magnetic hysteresis observed make the milled GdAl2 a promising material for application in the magnetic refrigeration technology. Finally, a discussion in an attempt to elucidate the origin of the spin-glass states previously reported in the literature for mechanically milled GdAl2 samples for very long times (400 and 1000 h) is presented. © 2016 American Physical Society.93

    Amplification of evanescent waves in a lossy left-handed material slab

    Full text link
    We carry out finite-difference time-domain (FDTD) simulations, with a specially-designed boundary condition, on pure evanescent waves interacting with a lossy left-handed material (LHM) slab. Our results provide the first full-wave numerical evidence for the amplification of evanescent waves inside a LHM slab of finite absorption. The amplification is due to the interactions between the evanescent waves and the coupled surface polaritons at the two surfaces of the LHM slab and the physical process can be described by a simple model.Comment: 4 pages, 2 figure

    The first genetic landscape of inherited retinal dystrophies in Portuguese patients identifies recurrent homozygous mutations as a frequent cause of pathogenesis.

    Get PDF
    Inherited retinal diseases (IRDs) are a group of ocular conditions characterized by an elevated genetic and clinical heterogeneity. They are transmitted almost invariantly as monogenic traits. However, with more than 280 disease genes identified so far, association of clinical phenotypes with genotypes can be very challenging, and molecular diagnosis is essential for genetic counseling and correct management of the disease. In addition, the prevalence and the assortment of IRD mutations are often population-specific. In this work, we examined 230 families from Portugal, with individuals suffering from a variety of IRD diagnostic classes (270 subjects in total). Overall, we identified 157 unique mutations (34 previously unreported) in 57 distinct genes, with a diagnostic rate of 76%. The IRD mutational landscape was, to some extent, different from those reported in other European populations, including Spanish cohorts. For instance, the EYS gene appeared to be the most frequently mutated, with a prevalence of 10% among all IRD cases. This was, in part, due to the presence of a recurrent and seemingly founder mutation involving the deletion of exons 13 and 14 of this gene. Moreover, our analysis highlighted that as many as 51% of our cases had mutations in a homozygous state. To our knowledge, this is the first study assessing a cross-sectional genotype-phenotype landscape of IRDs in Portugal. Our data reveal a rather unique distribution of mutations, possibly shaped by a small number of rare ancestral events that have now become prevalent alleles in patients

    Validation of commercial Mas receptor antibodies for utilization in Western Blotting, immunofluorescence and immunohistochemistry studies

    Get PDF
    Mas receptor (MasR) is a G protein-coupled receptor proposed as a candidate for mediating the angiotensin (Ang)-converting enzyme 2-Ang (1-7) protective axis of renin-angiotensin system. Because the role of this receptor is not definitively clarified, determination of MasR tissue distribution and expression levels constitutes a critical knowledge to fully understanding its function. Commercially available antibodies have been widely employed for MasR protein localization and quantification, but they have not been adequately validated. In this study, we carried on an exhaustive evaluation of four commercial MasR antibodies, following previously established criteria. Western Blotting (WB) and immunohistochemistry studies starting from hearts and kidneys from wild type (WT) mice revealed that antibodies raised against different MasR domains yielded different patterns of reactivity. Furthermore, staining patterns appeared identical in samples from MasR knockout (MasR-KO) mice. We verified by polymerase chain reaction analysis that the MasR-KO mice used were truly deficient in this receptor as MAS transcripts were undetectable in either heart or kidney from this animal model. In addition, we evaluated the ability of the antibodies to detect the human c-myc-tagged MasR overexpressed in human embryonic kidney cells. Three antibodies were capable of detecting the MasR either by WB or by immunofluorescence, reproducing the patterns obtained with an anti c-myc antibody. In conclusion, although three of the selected antibodies were able to detect MasR protein at high expression levels observed in a transfected cell line, they failed to detect this receptor in mice tissues at physiological expression levels. As a consequence, validated antibodies that can recognize and detect the MasR at physiological levels are still lacking

    A spherical perfect lens

    Full text link
    It has been recently proved that a slab of negative refractive index material acts as a perfect lens in that it makes accessible the sub-wavelength image information contained in the evanescent modes of a source. Here we elaborate on perfect lens solutions to spherical shells of negative refractive material where magnification of the near-field images becomes possible. The negative refractive materials then need to be spatially dispersive with ϵ(r)1/r\epsilon(r) \sim 1/r and μ(r)1/r\mu(r)\sim 1/r. We concentrate on lens-like solutions for the extreme near-field limit. Then the conditions for the TM and TE polarized modes become independent of μ\mu and ϵ\epsilon respectively.Comment: Revtex4, 9 pages, 2 figures (eps

    AutoMap is a high performance homozygosity mapping tool using next-generation sequencing data.

    Get PDF
    Homozygosity mapping is a powerful method for identifying mutations in patients with recessive conditions, especially in consanguineous families or isolated populations. Historically, it has been used in conjunction with genotypes from highly polymorphic markers, such as DNA microsatellites or common SNPs. Traditional software performs rather poorly with data from Whole Exome Sequencing (WES) and Whole Genome Sequencing (WGS), which are now extensively used in medical genetics. We develop AutoMap, a tool that is both web-based or downloadable, to allow performing homozygosity mapping directly on VCF (Variant Call Format) calls from WES or WGS projects. Following a training step on WES data from 26 consanguineous families and a validation procedure on a matched cohort, our method shows higher overall performances when compared with eight existing tools. Most importantly, when tested on real cases with negative molecular diagnosis from an internal set, AutoMap detects three gene-disease and multiple variant-disease associations that were previously unrecognized, projecting clear benefits for both molecular diagnosis and research activities in medical genetics

    Electromagnetic-field quantization and spontaneous decay in left-handed media

    Full text link
    We present a quantization scheme for the electromagnetic field interacting with atomic systems in the presence of dispersing and absorbing magnetodielectric media, including left-handed material having negative real part of the refractive index. The theory is applied to the spontaneous decay of a two-level atom at the center of a spherical free-space cavity surrounded by magnetodielectric matter of overlapping band-gap zones. Results for both big and small cavities are presented, and the problem of local-field corrections within the real-cavity model is addressed.Comment: 15 pages, 5 figures, RevTe

    A new transdermal drug delivery system containing hydroquinone

    Get PDF
    Hydroquinone (HQ) is a drug reported to possess manifold biological activities. HQ is highly unstable into various topical vehicles, presenting low topical bioavailability and a relevant level of toxicity. The Pluronic® Lecithin Organogel (PLOme) is a phospholipidic microemulsion designed for transdermal purposes. The aim of this work was therefore to incorporate HQ into PLOme. We evaluated the stability, the kinetic profile and the antimicrobial activity of HQ- incorporated PLOme. No relevant pH variation was observed. Long-term stability test showed an HQ degradation which led to a short shelf life. HQ permeation rate obtained was lower from PLOme than from a gel matrix. Free and PLOme-encapsulated hydroquinone showed to have a great in vitro inhibitory potential against of S. aureus strains. The encapsulation of HQ due its unstable characteristics could be an alternative to optimize its therapeutic usage, and so further investigation is required on this pharmaceutical form before commercialization.Colegio de Farmacéuticos de la Provincia de Buenos Aire
    corecore