273 research outputs found
Modelling and prediction of bacterial attachment to polymers
Infection by pathogenic bacteria on implanted and indwelling medical devices during surgery causes large morbidity and mortality worldwide. Attempts to ameliorate this important medical issue have included development of antimicrobial surfaces on materials, ‘no touch’ surgical procedures, and development of materials with inherent low pathogen attachment. The search for new materials is increasingly being carried out by high throughput methods. Efficient methods for extracting knowledge from these large data sets are essential. We used data from a large polymer microarray exposed to three clinical pathogens to derive robust and predictive machine-learning models of pathogen attachment. The models could predict pathogen attachment for the polymer library quantitatively. The models also successfully predicted pathogen attachment for a second-generation library, and identified polymer surface chemistries that enhance or diminish pathogen attachment
Desingularization of vortices for the Euler equation
We study the existence of stationary classical solutions of the
incompressible Euler equation in the plane that approximate singular
stationnary solutions of this equation. The construction is performed by
studying the asymptotics of equation -\eps^2 \Delta
u^\eps=(u^\eps-q-\frac{\kappa}{2\pi} \log \frac{1}{\eps})_+^p with Dirichlet
boundary conditions and a given function. We also study the
desingularization of pairs of vortices by minimal energy nodal solutions and
the desingularization of rotating vortices.Comment: 40 page
Energy Contents of Some Well-Known Solutions in Teleparallel Gravity
In the context of teleparallel equivalent to General Relativity, we study
energy and its relevant quantities for some well-known black hole solutions.
For this purpose, we use the Hamiltonian approach which gives reasonable and
interesting results. We find that our results of energy exactly coincide with
several prescriptions in General Relativity. This supports the claim that
different energy-momentum prescriptions can give identical results for a given
spacetime. We also evaluate energy-momentum flux of these solutions.Comment: 16 pages, accepted for publication in Astrophys. Space Sc
Magnetothermal Conductivity of Highly Oriented Pyrolytic Graphite in the Quantum Limit
We report on the magnetic field (0TT) dependence of the
longitudinal thermal conductivity of highly oriented pyrolytic
graphite in the temperature range 5 K 20 K for fields parallel to
the axis. We show that shows large oscillations in the
high-field region (B > 2 T) where clear signs of the Quantum-Hall effect are
observed in the Hall resistance. With the measured longitudinal electrical
resistivity we show that the Wiedemann-Franz law is violated in the high-field
regime.Comment: 4 Figures, to be published in Physical Review B (2003
Pre-M Phase-promoting Factor Associates with Annulate Lamellae in Xenopus Oocytes and Egg Extracts
We have used complementary biochemical and in vivo approaches to study the compartmentalization of M phase-promoting factor (MPF) in prophase Xenopus eggs and oocytes. We first examined the distribution of MPF (Cdc2/CyclinB2) and membranous organelles in high-speed extracts of Xenopus eggs made during mitotic prophase. These extracts were found to lack mitochondria, Golgi membranes, and most endoplasmic reticulum (ER) but to contain the bulk of the pre-MPF pool. This pre-MPF could be pelleted by further centrifugation along with components necessary to activate it. On activation, Cdc2/CyclinB2 moved into the soluble fraction. Electron microscopy and Western blot analysis showed that the pre-MPF pellet contained a specific ER subdomain comprising "annulate lamellae" (AL): stacked ER membranes highly enriched in nuclear pores. Colocalization of pre-MPF with AL was demonstrated by anti-CyclinB2 immunofluorescence in prophase oocytes, in which AL are positioned close to the vegetal surface. Green fluorescent protein-CyclinB2 expressed in oocytes also localized at AL. These data suggest that inactive MPF associates with nuclear envelope components just before activation. This association may explain why nuclei and centrosomes stimulate MPF activation and provide a mechanism for targeting of MPF to some of its key substrates
- …