273 research outputs found

    Modelling and prediction of bacterial attachment to polymers

    Get PDF
    Infection by pathogenic bacteria on implanted and indwelling medical devices during surgery causes large morbidity and mortality worldwide. Attempts to ameliorate this important medical issue have included development of antimicrobial surfaces on materials, ‘no touch’ surgical procedures, and development of materials with inherent low pathogen attachment. The search for new materials is increasingly being carried out by high throughput methods. Efficient methods for extracting knowledge from these large data sets are essential. We used data from a large polymer microarray exposed to three clinical pathogens to derive robust and predictive machine-learning models of pathogen attachment. The models could predict pathogen attachment for the polymer library quantitatively. The models also successfully predicted pathogen attachment for a second-generation library, and identified polymer surface chemistries that enhance or diminish pathogen attachment

    Desingularization of vortices for the Euler equation

    Full text link
    We study the existence of stationary classical solutions of the incompressible Euler equation in the plane that approximate singular stationnary solutions of this equation. The construction is performed by studying the asymptotics of equation -\eps^2 \Delta u^\eps=(u^\eps-q-\frac{\kappa}{2\pi} \log \frac{1}{\eps})_+^p with Dirichlet boundary conditions and qq a given function. We also study the desingularization of pairs of vortices by minimal energy nodal solutions and the desingularization of rotating vortices.Comment: 40 page

    Energy Contents of Some Well-Known Solutions in Teleparallel Gravity

    Full text link
    In the context of teleparallel equivalent to General Relativity, we study energy and its relevant quantities for some well-known black hole solutions. For this purpose, we use the Hamiltonian approach which gives reasonable and interesting results. We find that our results of energy exactly coincide with several prescriptions in General Relativity. This supports the claim that different energy-momentum prescriptions can give identical results for a given spacetime. We also evaluate energy-momentum flux of these solutions.Comment: 16 pages, accepted for publication in Astrophys. Space Sc

    Magnetothermal Conductivity of Highly Oriented Pyrolytic Graphite in the Quantum Limit

    Full text link
    We report on the magnetic field (0TB9 \le B \le 9T) dependence of the longitudinal thermal conductivity κ(T,B)\kappa(T,B) of highly oriented pyrolytic graphite in the temperature range 5 K T\le T\le 20 K for fields parallel to the cc-axis. We show that κ(T,B)\kappa(T,B) shows large oscillations in the high-field region (B > 2 T) where clear signs of the Quantum-Hall effect are observed in the Hall resistance. With the measured longitudinal electrical resistivity we show that the Wiedemann-Franz law is violated in the high-field regime.Comment: 4 Figures, to be published in Physical Review B (2003

    Pre-M Phase-promoting Factor Associates with Annulate Lamellae in Xenopus Oocytes and Egg Extracts

    Get PDF
    We have used complementary biochemical and in vivo approaches to study the compartmentalization of M phase-promoting factor (MPF) in prophase Xenopus eggs and oocytes. We first examined the distribution of MPF (Cdc2/CyclinB2) and membranous organelles in high-speed extracts of Xenopus eggs made during mitotic prophase. These extracts were found to lack mitochondria, Golgi membranes, and most endoplasmic reticulum (ER) but to contain the bulk of the pre-MPF pool. This pre-MPF could be pelleted by further centrifugation along with components necessary to activate it. On activation, Cdc2/CyclinB2 moved into the soluble fraction. Electron microscopy and Western blot analysis showed that the pre-MPF pellet contained a specific ER subdomain comprising "annulate lamellae" (AL): stacked ER membranes highly enriched in nuclear pores. Colocalization of pre-MPF with AL was demonstrated by anti-CyclinB2 immunofluorescence in prophase oocytes, in which AL are positioned close to the vegetal surface. Green fluorescent protein-CyclinB2 expressed in oocytes also localized at AL. These data suggest that inactive MPF associates with nuclear envelope components just before activation. This association may explain why nuclei and centrosomes stimulate MPF activation and provide a mechanism for targeting of MPF to some of its key substrates
    corecore