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Abstract 

Infection by pathogenic bacteria on implanted and indwelling medical devices during surgery 

causes large morbidity and mortality worldwide. Attempts to ameliorate this important 

medical issue have included development of antimicrobial surfaces on materials, ‘no touch’ 

surgical procedures, and development of materials with inherent low pathogen attachment. 

The search for new materials is increasingly being carried out by high throughput methods. 

Efficient methods for extracting knowledge from these large data sets are essential. We used 

data from a large polymer microarray exposed to three clinical pathogens to derive robust and 

predictive machine-learning models of pathogen attachment. The models could predict 

pathogen attachment for the polymer library quantitatively. The models also successfully 
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predicted pathogen attachment for a second-generation library, and identified polymer surface 

chemistries that enhance or diminish pathogen attachment. 

 

1. Introduction 

 
Bacterial attachment, growth, and biofilm formation on surfaces of biomedical devices such 

as prostheses, heart valves, intraocular lenses, urinary and venous catheters, and endotracheal 

tubes increases morbidity and mortality in the healthcare setting.
[1, 2]

 This has stimulated a 

search for polymers and other materials that resist the attachment of pathogens, or that exhibit 

antibacterial or bacteriostatic properties.
[3-9]

 Materials discovery is now increasingly been 

carried out using high throughput synthesis and characterization methods so that novel, useful 

areas of materials property space can be identified.
[10-19]

 While high throughput experimental 

techniques can dramatically accelerate new materials discovery, it is essential that 

complementary computational and informatics techniques are also are also be used. These 

tools allow the efficient extraction of useful information from the large data sets generated by 

high throughput materials experiments. Computational models of materials structure-property 

relationships also  improve understanding of the underlying processes, enhancing design or 

optimization of new materials. Quantitative models accelerate new materials development by 

indicating areas in extremely large materials space that are the most promising, helping direct 

synthesis and further experimentation, and identifying material ‘design rules‘. 

Recently, Hook et al.
[20]

 reported an experimental high throughput materials micro array 

approach to discover polymers with an inherent resistance to bacterial attachment and biofilm 

formation. This approach allowed investigation of the interaction of bacteria with hundreds of 

polymeric materials simultaneously. The monomers used to generate this library, and an 

image of the polymer array used in pathogen attachment testing, are given in Figure 1.  
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Figure 1. Monomers used to generate the first generation polymer library (upper), and an 

image of the polymer microarray on a standard 75x25mm microscope slide (lower). 

 

This approach succeeded in identifying a new class of weakly amphiphilic meth/acrylates that 

could resist the attachment of a range of clinically isolated strains.
[21]

 Limited surface 

structure-property relationships were also generated from experimental measurements of 

surface chemistry made using time-of-flight secondary ion mass spectrometry (ToF-SIMS). 
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These elucidated surface molecular structure information that correlated with bacterial 

attachment. 

Previously, we have shown that high quality molecular structure-property relationship models 

can be generated very successfully for polymers and other materials, without the need for 

experimental surface characterization, using sparse Bayesian feature selection and nonlinear 

modelling methods.
[14, 22-24]

 Here we show how these modelling techniques can be applied to 

high throughput bacterial adhesion data to successfully and quantitatively predict pathogen 

attachment to the surfaces of polymers in a large polymer library. These methods will 

accelerate discovery and optimization of materials with very low pathogen attachment that 

can be used to construct the next generation of medical devices to reduce 

nosocomial infections. 

 

2. Results 

The attachment of three clinically important pathogens, Pseudomonas aeruginosa (PA), 

Staphylococcus aureus (SA), and uropathogenic Escherichia coli (UPEC) to the polymer 

library was modelled separately because the surface structure-property relationships for each 

pathogen were likely to be different. The pathogens were labelled with GFP and the 

fluorescence of the bacteria was found to be directly proportional to the number of bacteria 

once any auto fluorescence from the polymers was subtracted.
[20]

  

In this section we first describe the main features of each model. We then describe the 

descriptors (selected by sparse feature selection methods) that were used in each model, how 

they relate to the surface chemistry, and how they relate to the results of the experimental 

ToF-SIMS experiments of Hook et al. Sparse models were used because they have better 

predictive power, and are often easier to interpret. Finally we validate the predictions of the 
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models using a second-generation library of polymers and discuss implications of the models 

for the design of low pathogen-attachment polymers. 

2.1 PA adhesion model 

After data points with fluorescence values below the limit of detection (LOD) were removed, 

we obtained a training set of 372 polymers to generate a model for PA adhesion, and a test set 

of 92 polymers to assess predictivity of the PA attachment model. The sparsest attachment 

model (with optimal predictivity) derived from these data employed a nonlinear Bayesian 

neural net, with 2 nodes in the hidden layer and using 22 relevant molecular descriptors. This 

model could predict the attachment of PA to the polymers in the training set with a standard 

error of estimation (SEE) of 0.17 log fluorescence (F) and an r
2
 of 0.84, and attachment to 

polymers in the test set with a standard error of prediction (SEP) of 0.16 log F and r
2
 of 0.87 

(i.e. bacterial fluorescence intensity could be predicted within a factor of 1.5). The ability of 

the model to quantitatively predict the training and test set with similar fidelity suggests the 

model was quite robust. Figure 2A shows the predicted versus measure log fluorescence 

values for this PA adhesion model.  

We found that sparse linear models were of substantially lower statistical quality than the best 

nonlinear model, indicating that the relationships between polymer surface chemistry and 

bacterial adhesion for PA were complex and also nonlinear. The best linear model employing 

11 relevant descriptors was relatively poor at predicting the training set (r
2
=0.66, SEE=0.24 

log fluorescence) and test set (r
2
=0.75, SEP=0.23 log fluorescence). The relatively poor 

performance of this linear model is similar to that reported by Hook et al. for a linear partial 

least squares (PLS) adhesion model using ToF-SIMS ion fragments as independent variables. 

Clearly, robust nonlinear models best describe the relationship between surface chemistry and 

PA adhesion. 
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   A       B        C 

Figure 2. Predicted and measured attachment of (A) PA, (B) SA, and (C) UPEC attachment (fluorescent intensity) for the training set (black circles) 

and test set (red triangles) 
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The relevance of the descriptors and implications for the surface chemistry of the polymers is 

discussed in detail in the descriptor analysis section. 

2.2 SA adhesion model 

For the SA adhesion model, the removal of data points with low signal to noise ratio, as with 

PA, resulted in a training set size of 367 polymers, and a test set of 91 polymers. For SA 

attachment the most predictive model was also derived from a nonlinear neural network 

having 3 nodes in the hidden layer, and using 18 molecular descriptors for the polymer 

structures (one large outlier corresponding to the copolymer synthesized with 90% monomer 

‘11’ and 10% monomer ‘B’ was removed). This model could predict the log SA adhesion 

with an r
2
 value of 0.85 and an SEE of 0.12 log fluorescence for both the training and test sets 

(i.e. fluorescence could be predicted within a factor of 1.4). The quality of the model 

predictions is illustrated in Figure 2B.  

The similarity for the statistics of prediction for the training and test sets again suggests the 

model is robust and not overfitted, as the small number of descriptors relative to the size of 

the data set also indicates. The SA attachment model reported here has high statistical power, 

as Figure 1 shows, and it models the data in the training and test set with good fidelity, 

especially given the uneven distribution of data points at low attachment. 

As with PA, the best sparse linear models we generated were substantially lower in predictive 

power. The best linear attachment model used 13 molecular descriptors and could only predict 

the training set polymer log fluorescence with an r
2
 value of 0.62 and SEE of 0.19 log 

fluorescence.  The test set predictions were also of lower quality, with an r
2
 value of 0.67 and 

an SEP 0.18 log fluorescence. This again suggests very substantial complexity and 

nonlinearity in the relationship between polymer molecular properties and the SA adhesion.  
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2.3 UPEC attachment model 

The adhesion of UPEC to the polymer library was significantly lower than for the other two 

pathogens. This may be related to the PA and SA forming biofilms on many surfaces more 

strongly and frequently than UPEC.  Recent reports of biofilm formation in strains of UPEC 

isolated from patients put the percentage as <25% coverage.
[25, 26]

 As a consequence of the 

lower UPEC attachment, the difference between polymer background fluorescence and that of 

polymer plus bacteria fluorescence was often small and of low statistical significance. 

Consequently, the number of statistically reliable data points for UPEC adhesion was very 

much smaller than for PA and SA.  The size of the training set was only 106 polymers and for 

the test set, 26 polymers. This reduces the molecular diversity of the model and limits the 

domain of applicability to new polymers. As with the other two pathogens, non-linear models 

for UPEC adhesion performed much better than linear models, although the quality of the 

nonlinear model was also lower than for PA and SA (see Figure 2). This is probably due to 

the smaller number of polymers in the data set, and the higher signal to noise ratio for these 

data.  

The best nonlinear model relating UPEC adhesion to polymer structure was generated by a 

sparse neural network with four hidden layer nodes using 11 relevant molecular descriptors. 

This model predicted the adhesion of UPEC to the polymers in the training set with an SEE of 

0.43 log fluorescence and r
2
 of 0.58, while the UPEC adhesion to polymers in the test set was 

predicted with an SEP of 0.48 log fluorescence and r
2
 of 0.73. UPEC adhesion could therefore 

be predicted to within a factor of 3. The quality of prediction of UPEC adhesion to polymers 

in the training and test sets is illustrated in Figure 2C. 

The linear models linking bacterial attachment and molecular descriptors were very poor, 

suggesting an even higher degree of nonlinearity in the structure-adhesion relationships for 

UPEC.  
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3. Discussion  

A biofilm is an assemblage of microbial cells that is irreversibly associated (not removed by 

gentle rinsing) with a surface and enclosed in a matrix of primarily polysaccharide 

material.
[27]

 Biofilm formation is an important mechanism of pathogenesis for SA, PA and 

some other bacteria. 
[1]

 

Several characteristics of material surfaces have been implicated in microbial attachment. 

Microbial colonization is reported to be favoured by surface roughness because the surface 

area is higher.
[27]

 However, Hook et al. found no correlation between roughness and bacterial 

attachment for the current polymer library most likely due to the relatively small scale of 

surface features (ra< 10 nm).
[20]

 Physicochemical properties of the surface have been proposed 

to exert a strong influence on the rate and extent of pathogen attachment. Many investigators 

have found that pathogens attach more rapidly to hydrophobic surfaces such as polystyrene 

and Teflon than to hydrophilic materials such as glass. However, the results have been 

contradictory suggesting attachment is not simply related to surface energy.
[27]

  Hook et al.
[20]

 

did not find a relationship between water contact angle and attachment, but did observe a 

correlation between the ToF SIMS characterisation of polymer surface chemistry and 

pathogen attachment. For PA and SA it was found that cyclic hydrocarbon groups, tertiary 

butyl groups, and aliphatic groups (all hydrophobic) on the meth/acrylate polymer were 

correlated with low bacterial attachment. It was also found that ions from ethylene glycol and 

hydroxyl-containing fragments (all hydrophilic) correlated with higher bacterial attachment, 

presumably by facilitating hydrogen bonding with lipopolysaccharides, lipoteichoic acids or 

exopolysaccharides present on the bacterial cell surface or biofilm. For materials with 

resistance to bacterial attachment, the PLS model identified the hydrophobic moieties such as 

aromatic and aliphatic carbon groups when associated with the weakly polar ester groups of 
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the meth/acrylate polymers. This anti attachment behaviour is clearly correlated with these 

materials in the library, but the biochemical mechanism for the pathogen responses to these 

surfaces is yet to be elucidated.
[20]

  

As the results of the modelling studies show, the relationship between surface chemistry and 

pathogen attachment is complex and quite nonlinear. The linear models we developed using 

computed descriptors, and the preliminary linear models derived from experimental ToF-

SIMS features
[20]

 had much lower statistical quality and predictive power than the nonlinear 

models we report here. 

3.1 Surface chemistry descriptors for PA attachment 

The relevant descriptors in the Bayesian neural network model for PA attachment after sparse 

feature selection were: the number of hydrogen bond acceptors on nitrogen, calculated log 

octanol/water partition coefficient, molecular dipole moment, log aqueous solubility, number 

of OH groups, number of carbonyl groups (all related to hydrophobicity or proton transfer), 

number of tetrahedral atomic stereocenters, the ring complexity, molecular eccentricity and 

asphericity (all related to molecular shape), numbers of tetrahedral (sp3) carbon atoms, ring 

tetrahedral (sp3) carbon atoms, unsubstituted aromatic, terminal allylic carbon atoms, number 

of aliphatic ester groups, number of methyl groups, number of CR4 groups, number of 

methylene groups substituted by an electronegative atom, number of allyl groups, number of 

secondary carbon atoms substituted by electronegative atoms (all largely related to 

hydrophobicity), and the number of ester alpha hydrogen atoms that have adjacent carbon 

heteroatom substitution.  

Consequently, there is good general agreement between the properties found to control PA 

attachment identified by ToF-SIMS analyses and those found to be important in our 

computational model based entirely on computed molecular descriptors. Previously, we have 

shown similarly good agreement between the molecular descriptors found to dominate in the 

control of embryoid body attachment and the ToF-SIMS data of the same polymer library.
[23]
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Taken together, this suggests strongly that the computed molecular descriptors are effective at 

capturing important features of the materials. 

3.2 Surface chemistry descriptors for SA attachment 

In the computational SA model the most relevant molecular descriptors were similar to those 

in the PA model. These molecular descriptors were: the number of hydrogen bond acceptors 

on nitrogen, log aqueous solubility, number of primary and secondary OH groups, number of 

carbonyl oxygen atoms (largely related to hydrophobicity/hydrophilicity), the molecular 

radius of gyration and eccentricity (related to molecular shape), numbers of tetrahedral (sp3) 

and ring tetrahedral (sp3) carbon atoms, number of substituted aromatic carbon atoms, 

number of ester groups, number of aromatic ethers, number of methyl and number of 

methylene carbon atoms,  number of =CHR fragments,  number of secondary carbon atoms 

attached to a heteroatom (largely related to hydrophobicity), number of ester alpha hydrogen 

atoms, and number of violations of Lipinski’s rule ( a complex mixture of size, 

hydrophobicity and hydrogen bond properties). The ToF-SIMS analysis for SA found very 

similar molecular properties were involved in attachment to those identified for PA.  

The experimental studies of Hook et al. and modelling studies presented here therefore 

identified a number of common molecular descriptors that are important for describing the 

adhesion of the bacterial species studies to this polymer library. These include indices for 

molecular hydrophobicity, polarity, hydrogen-bonding capacity and functional groups 

associated with these properties. This is easy to rationalize since the first stage of the 

attachment of bacterial cells to the polymer surface could be dominated by van der Waals 

forces, hydrogen bonds, dipole interactions and hydrophobic interactions between the 

oligosaccharide biofilm components and the surface. Hook et al.
[20]

 reported that the bacterial 

attachment experiments identified cyclic, but not linear, hydrocarbon moieties and ester 

groups as making important contributions to the desirable low pathogen attachment. This 

observation was also consistent with the ring complexity (more complex ring systems have 
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larger values, for linear systems it is zero) and ester descriptors being shown to be important 

in the computational molecular descriptor models.  

3.3 Surface chemistry descriptors for UPEC attachment 

The molecular descriptors for the polymers in the UPEC model were similar to those in the 

PA and SA models, albeit fewer in number:  the number of hydrogen bond acceptors on 

nitrogen, the molecular complexity and molecular eccentricity, number of allylic carbon 

atoms, number of primary OH groups, number of aromatic esters, numbers of methyl and 

methylene fragments, number of primary and number of secondary allylic carbon atoms. The 

analysis of UPEC adhesion in terms of ToF SIMS data reported by Hook et al. was unable to 

make any statements about the types of ion fragments from ToF-SIMS analysis that correlated 

with UPEC attachment. 

3.4 Prediction of pathogen attachment for polymers below the LOD. 

The quality of the computational pathogen adhesion models was sufficiently high to allow 

prediction of polymers with the lowest adhesion. Table 1 summarizes the predicted 

fluorescence for the polymers of lowest pathogen attachment predicted by the computational 

models based in generation 1 polymers. These include the small number of polymers that 

were listed as ‘zero’ attachment in the paper by Hook et al. Both high and low fluorescence 

values were predicted for these polymers. This is because a material has a measured 

fluorescence value below the LOD for both very low bacterial attachment as well as large 

variability in fluorescence values between replicates of the same polymer due to polymer 

defects, high autofluorescence, or due to contaminants.
[28]

 The computational models allow 

good estimates of the fluorescence and ultimately, bacterial attachment to be made for these 

experimentally difficult cases.  
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Table 1. Predicted fluorescence values for polymers reported to have ‘zero’ attachment 

(fluorescence values below the LOD) in generation 1. The polymer name consists of the two 

monomers plus the percentage of the first monomer in the copolymer. (e.g. 1B20% means a 

copolymer made from 20% monomer 1 and 80% monomer B) 

 

PA SA 

Polymer Log 

fluorescence 

Polymer Log 

fluorescence 

1B(20%) 6.67 3D(10%) 6.45 

2D(30%) 6.81 5A(10%) 5.02 

2F(20%) 6.70 5A(15%) 5.16 

3B(20%) 7.04 5A(20%) 5.28 

5A(10%) 6.72 5A(25%) 5.39 

5A(20%) 7.18 5D(15%) 4.69 

5A(25%) 7.37 5F(15%) 4.94 

6B(20%) 7.19 8B(20%) 5.79 

7D(10%) 6.87 8D(30%) 5.95 

7F(10%) 6.78 9B(15%) 7.27 

9B(20%) 6.91 9B(20%) 7.22 

9D(15%) 7.06 9D(20%) 7.18 

12B(20%) 6.18 12D(20%) 6.37 

13D(15%) 6.39 13D(15%) 6.53 

  13D(20%) 6.53 
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3.5 Prediction of pathogen attachment for second-generation polymers 

Hook et al. also designed a smaller, second generation library of polymers based on the high 

throughput screening of their large polymer library (Figure 3), with the aim of identifying 

polymers of particularly low pathogen attachment. 

 

Figure 3. Upper: Monomers used in second-generation screen. Each monomer was mixed 

with each of the others at monomer concentrations of 10, 15, 20, 25, 30, 40, 45, 55, 60, 70, 75, 

80, 85, 90, and 100% and polymerized. Lower: Truth tables comparing high and low adhesion 

polymers from the generation 2 library with model predictions of high and low adhesion from 

the generation 1 data. 

 

We tested the ability of the bacterial adhesion models for the three pathogens to predict low 

adhesion polymers from the second-generation library. As there were sixteen polymers 

common to the first and second-generation polymers, we could assess the reliability of the 

model predictions for the second-generation polymers. This small library therefore constituted 
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a useful independent test set of materials to validate the models’ ability to predict outcomes of 

new experiments. 

The comparison was complicated by differences in the GFP expression of pathogens in the 

second-generation compared to those in the first generation.  To overcome this most 

effectively we used a classification approach.  By defining a threshold for high versus low 

adhesion for each pathogen and library generation, we could assess the ability of the model to 

discriminate between useful, low adhesion materials and less useful higher adhesion materials. 

The results of this comparison are presented as truth tables in Figure 3. 

The adhesion model for P. aeruginosa correctly predicted the adhesion class for 13 of 16 

second generation polymers (81%). The S. aureus adhesion model correctly predicted the 

adhesion class for second generation polymers in 12 of 13 second generation polymers (92%). 

We could also use the computational models for PA, SA, and UPEC attachment generated by 

the generation 1 fluorescence data to predict the lowest attachment polymers in the whole 

generation 2 library.  These are summarized in Table 2. Clearly, many of these polymers have 

lower pathogen attachment than members of the first generation library. 

 

Table 2. Ten polymers in generation 2 predicted to have the lowest pathogen attachment by 

the generation 1 fluorescence models. 

PA SA 

Polymer Log 

fluorescence 

Polymer Log 

fluorescence 

4B90% 5.56 8B60% 6.39 

5B90% 5.57 8B70% 6.39 

8B90% 5.60 8B50% 6.40 

4B80% 5.61 8B80% 6.41 
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5B80% 5.63 8B40% 6.41 

8B80% 5.67 8B90% 6.43 

4B70% 5.68 8B30% 6.43 

5B70% 5.70 4B80% 6.46 

15B90% 5.74 4B90% 6.46 

4B60% 5.75 4B70% 6.46 

 

3.6 Prediction of pathogen attachment for novel monomers 

As a final validation on the predictive power of the models, we calculated the adhesion of 

homopolymers derived from several monomers chosen to have either linear or cyclic 

hydrocarbon moieties in their structures that were not part of the monomer set used to 

generate the model. To avoid complications cause by differences in the GFP expression of 

pathogens between experiments, we again defined a threshold for high versus low adhesion. 

Our models derived from the first generation polymer library could successfully predict that 

polymers derived from monomers containing cyclic moieties had much lower attachment than 

those derived from monomers containing linear or non-cyclic moieties.  This is consistent 

with the descriptor analysis that identified esters and cyclic hydrocarbon moieties as being 

associated with low pathogen attachment.  A table summarizing the pathogen adhesion 

properties from experiments and model predictions is given in Table 3. 
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Table 3. High and low adhesion polymers derived from monomers with model predictions of 

high and low PA adhesion from the generation 1 data. 

Monomer Experimental adhesion Predicted adhesion 

 

High High 

 

High High 

 

High High 

 

High High 

 

High High 

 

High High 

 

High High 

 

Low Low 

 

Low Low 

 
 

Given the encouraging results on modelling pathogen adhesion of this large first generation 

polymer library, and the qualitative validation of the predictions of pathogen adhesion for the 
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second generation library, we are now developing the polymers predicted to have the lowest 

attachment (lowest adhesion polymers from Tables 1 and 3) by the pathogen adhesion models. 

 

4. Conclusions 

We have demonstrated the potential for machine learning methods to model the complex 

processes involved in pathogen attachment to large polymer libraries using molecular 

descriptors, and to predict attachment to materials not yet synthesized. The robust models we 

developed for attachment of three common and clinically important pathogens were able to 

predict attachment to polymers not used to train the models. As well as ease of calculation and 

removing the need for additional experimentation, the use of molecular descriptors rather than 

experimental ToF-SIMS spectral data generates structure-property models of much higher 

power and robustness. The models obtained from this work have identified the surface 

chemistry properties that favour high and low pathogen attachment. They could also identify 

new polymers with particularly low pathogen attachment for potential clinical application. 

The models describe the relationships between polymer structure and pathogen attachment 

that are specific to the three microorganisms studied here. However, these robust 

computational methods would be equally applicable to modelling attachment data for other 

pathogens. These computational techniques are very suitable for analysing large data sets 

from high throughput experiments that are being employed at an increasing rate. They make a 

valuable contribution to the rational design of fit-for-function materials suitable for the next 

generation implantable and indwelling medical devices. 
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5. Experimental 

The data from the experiments reported by Hook et al.
[20]

 provide an ideal platform for 

developing an improved understanding of material-bacterial interactions using advanced 

modelling techniques.   

Pathogen screening using material microarrays: These experiments measured the attachment 

of three clinically relevant pathogens, Pseudomonas aeruginosa (PA), Staphylococcus aureus 

(SA), and uropathogenic Escherichia coli (UPEC) to members of a large (496 polymer) 

library. The three bacterial species were labelled with green fluorescent protein (GFP) so that 

the number of bacteria attached to the surfaces could be estimated by fluorescence. Briefly, 

prior to incubation the microarray slides were washed in distilled water, air-dried and UV 

sterilized. Polymer slides were incubated in medium inoculated with GFP-tagged bacteria at 

37 °C with 60 r.p.m. shaking for 72 h. Controls  slides were also incubated without bacteria. 

The slides were removed and washed three times with PBS at room temperature for 5 minutes, 

rinsed with distilled water and air-dried. The fluorescent images from the slides were acquired 

using a GenePix Autoloader 4200AL Scanner (Molecular Devices, US) with a 488 nm 

excitation laser and a blue emission filter (510–560 nm). The total fluorescence intensity from 

polymer spots was acquired using GenePix Pro 6 software (Molecular Devices, US). Hook et 

al. 
[20]

 established a good linear relationship (r
2
=0.93) between GFP fluorescence and 

coverage of bacteria, so we modelled the fluorescence directly as a surrogate for pathogen 

coverage. 

Polymer library: The polymer library was synthesized and characterized as previously 

described in Yang et al.
[29]

. It consisted of 496 polymers synthesized by mixing 22 monomers 

at various ratios and polymerizing them. The monomers used are summarized in Figure 1. 

Hook et al.
[20]

 also generated a more focused, second generation library based on the lowest 

attachment polymers from the initial library, with sixteen polymers in common to allow the 



  Submitted to  

202020202020202020204202020 

first and second generation experiments to be compared. We investigated whether pathogen 

attachment of polymers from this second generation library could be predicted by the models 

generated from the first generation library. The accuracy of these predictions could then be 

assessed using the measured pathogen attachments for the second library. 

Limit of detection considerations: For some polymers the measurement of the fluorescence 

signal (F) for PA, SA and UPEC was below 3 times the standard deviation of the background 

fluorescence from the polymer (n=3), hence the commonly used convention was employed to 

classify that the signal was determined as being below the limit of detection (LOD) for that 

material. These polymers were excluded from the modelling study, as their pathogen 

attachment could not be reliably determined.  In the case of PA and SA, this resulted in 

removal of a very small number of polymers.  For UPEC, where attachment was lower, the 

majority of the data set fell into this category. Note that some of the most interesting low 

attachment polymers may fall into this LOD class.  We relied on the models to predict the 

actual degree of attachment of pathogens for these cases where the LOD was small.  Since 

systematic variations in copolymer composition in both generations of arrays were part of the 

experimental design, we were confident of detecting any data points that were anomalous. For 

example monomers A and B at a 70:30 (A:B) ratio should have pathogen attachment values 

that did not differ greatly from the nearest composition (monomers A and B at a 75:25). As a 

further safeguard, the materials were randomly distributed on the array and not positioned in 

accordance with their composition. For the monomers used in this study high auto-

fluorescence was only observed for monomer E, although this was subtracted from the 

measured value as were the low levels noted from other monomers.  

Computational modelling: For computational modelling we partitioned the data sets into 

training and test sets. The training sets were used to generate the models and contained 80% 

of the data. The remaining 20% of the data constituted test sets used to estimate how well the 
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models could predict data not used to generate the model. That is, the test sets were not used 

to generate the models, only to assess their predictive power. The splitting of training and test 

sets was achieved by k-means cluster analysis. We generated 68 molecular descriptors 

(mathematical objects that capture the molecular properties of polymers, see Table 4) using 

Dragon v. 5.516 and Adriana v. 2.217 software.
[30, 31]

 This pool of descriptors were chosen to 

be chemically interpretable, and a large number of more complex potential descriptors were 

not used. The QSPR models were generated using multiple linear regression with sparsity 

imposed by an expectation maximization algorithm 
[32]

. Nonlinear models used three layer 

neural networks with the same number of input nodes as descriptors used, a variable but small 

number of hidden layer nodes, and a single output node corresponding to the property (log 

pathogen coverage/fluorescence) being modelled.  
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Table 4. Molecular descriptors used in models 

Parameter Description 

HAcc_N Number of nitrogen atom hydrogen-bond acceptors 

XlogP Log octanol/water partition coefficient 

Dipole Molecular dipole moment 

logS Log aqueous solubility 

NStereo Number of stereo centres  

RComplexity Ring complexity 

Eccentric Molecular eccentricity 

Aspheric Molecular asphericity 

Rgyr Molecular radius of gyration 

Complexity Molecular complexity 

NAtoms Number of atoms 

nCconj Number of non-aromatic conjugated carbons (sp2) 

nOHs Number of secondary alcohols 

nArOR Number of ethers (aromatic) 

nCs Number of total secondary carbons (sp3) 

nCrs Number of ring secondary carbons (sp3) 

nCbH Number of unsubstituted aromatic carbons (sp2) 

nR=Cp Number of terminal primary carbons (sp2) 

nR=Cs Number of aliphatic secondary carbons (sp2) 

nRCOOR Number of esters (aliphatic) 

nOHp Number of primary alcohols 

nCb- Number of substituted benzene carbons (sp2) 
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O-056 Number of alcohol groups 

C-001 Number of atom-centred fragments CH3R or CH4  

C-004 Number of atom-centred fragments CR4 

C-005 Number of atom-centred fragments CH3X 

C-006 Number of atom-centred fragments CH2RX 

C-015 Number of atom-centred fragments =CH2 

C-026 Number of atom-centred fragments R..CX..R 

C-040 Number of atom-centred fragments R-C(=X)-X/R-C or X/X=C=X 

C-002 Number of atom-centred fragments CH2R2 

C-016 Number of atom-centred fragments =CHR 

O-058 Number of atom-centred fragments =O 

H-052 Number of hydrogens attached to CO(sp3) with adjacent CX group 

H-046 Number of hydrogens attached to CO(sp3) without adjacent CX group 

H-047 Number of hydrogens attached to C1(sp3)/CO(sp2) 

NViolationsExtRo5 Number of violations of extended Lipinski’s rule of 5 

NViolationsRo5 Number of violations of Lipinski’s rule of 5 

 

As the biofilm coverage is linearly related to the GFP fluorescence,
[20]

 we used the logarithm 

of the fluorescence at the dependent variable property being modelled, as is usual practice in 

these types of machine learning models. The complexity of the neural network models was 

controlled using Bayesian regularization that employs either a Gaussian prior (BRANNGP) or 

a sparsity-inducing Laplacian prior (BRANNLP) 
[33-36]

. The maximum of the Bayesian 

evidence for the model was used to stop the training of the neural network. Both neural 

network methods effectively prune the number of weights in the network to a number that is 

substantially smaller than the number of weights in a fully connected network.  This reduced 
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number of weights is called the number of effective weights, and is one of the reasons why 

Bayesian regularized neural networks are relatively immune to overfitting. The BRANNLP 

neural network also removes less relevant descriptors from the model to a degree determined 

by the sparsity setting selected. Details of the three modelling algorithms have been published 

previously 
[32-34]

. No outliers were removed from the models unless noted. 

While the full polymer library consisted of 496 polymers, neglecting those polymers for 

which the reliability of fluorescence detection as assessed by a t-test (p>0.05) was low 

resulted in 464 data points for PA, 458 for SA, and 132 for UPEC. Hence the training and test 

sets consisted of 372 and 92 data points respectively for PA, 367 and 91 for SA, and 106 and 

26 for UPEC. 
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We used data from polymer microarrays (TOC figure bottom) exposed to three clinical 

pathogens (TOC figure left) to derive robust and predictive machine-learning models of 

pathogen attachment (TOC figure centre). The model could predict pathogen attachment 

quantitatively, predict attachment of new polymers, and identify polymer surface functional 

groups that enhance or diminish pathogen attachment (TOC figure right). 
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