30 research outputs found

    Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF

    Get PDF
    The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neutrino Facility (LBNF) is described

    More Precise Shaping of Guide Screws with Trapezoidal Thread

    No full text
    © 2020, Allerton Press, Inc. Abstract: How does the thread-cutter configuration with respect to the workpiece axis in roughing affect the shape precision of the external trapezoidal thread and the margin in final grinding? That question is investigated in the present work. An algorithm is outlined for determining the transverse profile of the helical channel in the external trapezoidal thread at the inner, central, and outer diameters. The channel profile calculated from that algorithm determines the cutting-edge profile at the front surface of a cutter positioned perpendicularly to the part’s helical surface for preliminary machining

    Baikal-GVD: cascades

    No full text
    Baikal-GVD is a next generation, kilometer-scale neutrino telescope currently under construction in Lake Baikal. GVD is formed by multi-megaton subarrays (clusters) and is designed for the detection of astrophysical neutrino fluxes at energies from a few TeV up to 100 PeV. The design of Baikal-GVD allows one to search for astrophysical neutrinos with flux values measured by IceCube already at early phases of the array construction. We present here preliminary results of the search for high-energy neutrinos via the cascade mode obtained in 2015 and 2016

    Baikal-GVD: status and prospects

    No full text
    Baikal-GVD is a next generation, kilometer-scale neutrino telescope under construction in Lake Baikal. It is designed to detect astrophysical neutrino fluxes at energies from a few TeV up to 100 PeV. GVD is formed by multi-megaton subarrays (clusters). The array construction started in 2015 by deployment of a reduced-size demonstration cluster named "Dubna" . The first cluster in it’s baseline configuration was deployed in 2016, the second in 2017 and the third in 2018. The full-scale GVD will be an array of ~10.000 light sensors with an instrumented volume about of 2 cubic km. The first phase (GVD-1) is planned to be completed by 2020-2021. It will comprise 8 clusters with 2304 light sensors in total. We describe the design of Baikal-GVD and present selected results obtained in 2015 - 2017

    Baikal-GVD: cascades

    Get PDF
    Baikal-GVD is a next generation, kilometer-scale neutrino telescope currently under construction in Lake Baikal. GVD is formed by multi-megaton subarrays (clusters) and is designed for the detection of astrophysical neutrino fluxes at energies from a few TeV up to 100 PeV. The design of Baikal-GVD allows one to search for astrophysical neutrinos with flux values measured by IceCube already at early phases of the array construction. We present here preliminary results of the search for high-energy neutrinos via the cascade mode obtained in 2015 and 2016
    corecore