119 research outputs found

    Voltage Clamp Fluorometric Measurements on a Type II Na+-coupled Pi Cotransporter: Shedding Light on Substrate Binding Order

    Get PDF
    Voltage clamp fluorometry (VCF) combines conventional two-electrode voltage clamp with fluorescence measurements to detect protein conformational changes, as sensed by a fluorophore covalently attached to the protein. We have applied VCF to a type IIb Na+-coupled phosphate cotransporter (NaPi-IIb), in which a novel cysteine was introduced in the putative third extracellular loop and expressed in Xenopus oocytes. Labeling this cysteine (S448C) with methanethiosulfonate (MTS) reagents blocked cotransport function, however previous electrophysiological studies (Lambert G., I.C. Forster, G. Stange, J. Biber, and H. Murer. 1999. J. Gen. Physiol. 114:637–651) suggest that substrate interactions with the protein can still occur, thus permitting study of a limited subset of states. After labeling S448C with the fluorophore tetramethylrhodamine MTS, we detected voltage- and substrate-dependent changes in fluorescence (ΔF), which suggested that this site lies in an environment that is affected by conformational change in the protein. ΔF was substrate dependent (no ΔF was detectable in 0 mM Na+) and showed little correlation with presteady-state charge movements, indicating that the two signals provide insight into different underlying physical processes. Interpretation of ion substitution experiments indicated that the substrate binding order differs from our previous model (Forster, I., N. Hernando, J. Biber, and H. Murer. 1998. J. Gen. Physiol. 112:1–18). In the new model, two (rather than one) Na+ ions precede Pi binding, and only the second Na+ binding transition is voltage dependent. Moreover, we show that Li+, which does not drive cotransport, interacts with the first Na+ binding transition. The results were incorporated in a new model of the transport cycle of type II Na+/Pi cotransporters, the validity of which is supported by simulations that successfully predict the voltage and substrate dependency of the experimentally determined fluorescence changes

    Comparison of electron injection and recombination on TiO2 nanoparticles and ZnO nanorods photosensitized by phthalocyanine

    Get PDF
    Titanium dioxide (TiO2) and zinc oxide (ZnO) semiconductors have similar band gap positions but TiO2performs better as an anode material in dye-sensitized solar cell applications. We compared two electrodes made of TiO2nanoparticles and ZnO nanorods sensitized by an aggregation-protected phthalocyanine derivative using ultrafast transient absorption spectroscopy. In agreement with previous studies, the primary electron injection is two times faster on TiO2, but contrary to the previous results the charge recombination is slower on ZnO. The latter could be due to morphology differences and the ability of the injected electrons to travel much further from the sensitizer cation in ZnO nanorodsSpanish MINECO (CTQ2017-85393-P) and the Comunidad de Madrid (FOTOCARBON, S2013/MIT-2841) are highly acknowledged. K.V. acknowledges the Doctoral Programme of Tampere University of Technology for the financial support

    Effect of co-adsorbate and hole transporting layer on the photoinduced charge separation at the TiO2-phthalocyanine interface

    Full text link
    Understanding the primary processes of charge separation (CS) in solid-state dye-sensitized solar cells (DSSCs) and, in particular, analysis of the efficiency losses during these primary photoreactions is essential for designing new and efficient photosensitizers. Phthalocyanines (Pcs) are potentially interesting sensitizers having absorption in the red side of the optical spectrum and known to be efficient electron donors. However, the efficiencies of Pc-sensitized DSSCs are lower than that of the best DSSCs, which is commonly attributed to the aggregation tendency of Pcs. In this study, we employ ultrafast spectroscopy to discover why and how much does the aggregation affect the efficiency. The samples were prepared on a standard fluorine-doped tin oxide (FTO) substrates covered by a porous layer of TiO2nanoparticles, functionalized by a Pc sensitizer and filled by a hole transporting material (Spiro-MeOTAD). The study demonstrates that the aggregation can be suppressed gradually by using co-adsorbates, such as chenodeoxycholic acid (CDCA) and oleic acid, but rather high concentrations of co-adsorbate is required. Gradually, a few times improvement of quantum efficiency was observed at sensitizer/co-adsorbate ratio Pc/CDCA = 1:10 and higher. The time-resolved spectroscopy studies were complemented by standard photocurrent measurements of the same sample structures, which also confirmed gradual increase in photon-to-current conversion efficiency on mixing Pc with CDCAK.V. acknowledges the Doctoral Programme of Tampere University of Technology for the financial support. N.V.T. acknowledges NATO SPS project no. 985043. Financial support from Comunidad de Madrid, Spain (S2013/MIT2841, FOTOCARBON) and MINECO, Spain (CTQ2014- 52869-P and CTQ2017-85393-P) is acknowledged. IMDEA Nanociencia acknowledges support from the “Severo Ochoa” Programme for Centres of Excellence in R&D (MINECO, grant SEV-2016-0686)

    Mapping conformational changes of a type IIb Na+/Pi cotransporter by voltage clamp fluorometry.

    Full text link
    The fluorescence of a fluorophore depends on its environment, and if attached to a protein it may report on conformational changes. We have combined two-electrode voltage clamp with simultaneous fluorescence measurements to detect conformational changes in a type IIb Na(+)/P(i) cotransporter expressed in Xenopus oocytes. Four novel Cys labelled with a fluorescent probe yielded voltage-and substrate-dependent changes in fluorescence (F). Neither Cys-substitution nor labelling significantly altered the mutants' electrogenic properties. Different F responses to voltage and substrate were recorded at the four sites. S155C, located in an intracellular re-entrant loop in the first half of the protein, and E451C, located in an extracellular re-entrant loop in the second half of the protein both showed Na(+), Li(+)- and P(i)-dependent F signals. S226C and Q319C, located at opposite ends of a large extracellular loop in the middle of the protein, mainly responded to changes in Na(+) and Li(+). Hyperpolarization increased F for S155C and S226C, but decreased F for Q319C and E451C. The labelling and F response of S155C, confirmed that the intracellular loop containing Ser-155 is re-entrant as it is accessible from the extracellular milieu. The behavior of S155C and E451C indicates a strong involvement of the two re-entrant loops in conformational changes during the transport cycle. Moreover, the data for S226C and Q319C suggest that also the large extracellular loop is associated with transport function. Finally, the reciprocal voltage-dependencies of the S155C-E451C and S226C-Q319C pairs suggest reciprocal conformational changes during the transport cycle for their respective local environments

    Temperature dependence of steady-state and presteady-state kinetics of a type IIb Na+/Pi cotransporter

    Full text link
    The temperature dependence of the transport kinetics of flounder Na(+)-coupled inorganic phosphate (P(i)) cotransporters (NaPi-IIb) expressed in Xenopus oocytes was investigated using radiotracer and electrophysiological assays. (32)P(i) uptake was strongly temperature-dependent and decreased by approximately 80% at a temperature change from 25 degrees C to 5 degrees C. The corresponding activation energy (E (a)) was approximately 14 kcal mol(-1) for the cotransport mode. The temperature dependence of the cotransport and leak modes was determined from electrogenic responses to 1 mM P(i) and phosphonoformic acid (PFA), respectively, under voltage clamp. The magnitude of the P(i)- and PFA-induced changes in holding current decreased with temperature. E (a) at -100 mV for the cotransport and leak modes was approximately 16 kcal mol(-1) and approximately 11 kcal mol(-1), respectively, which suggested that the leak is mediated by a carrier, rather than a channel, mechanism. Moreover, E (a) for cotransport was voltage-independent, suggesting that a major conformational change in the transport cycle is electroneutral. To identify partial reactions that confer temperature dependence, we acquired presteady-state currents at different temperatures with 0 mM P(i) over a range of external Na(+). The relaxation time constants increased, and the peak time constant shifted toward more positive potentials with decreasing temperature. Likewise, there was a depolarizing shift of the charge distribution, whereas the total available charge and apparent valency predicted from single Boltzmann fits were temperature-independent. These effects were explained by an increased temperature sensitivity of the Na(+)-debinding rate compared with the other voltage-dependent rate constants

    Diminished salivary epidermal growth factor secretion : a link between Sjogren's syndrome and autoimmune gastritis?

    Get PDF
    Objectives: Healthy human labial salivary glands produce epidermal growth factor (EGF). In Sjogren's syndrome (SS), EGF staining is diminished. SS is also associated with chronic autoimmune corpus gastritis. We therefore hypothesized that EGF secretion would be diminished in SS and that this could affect gastric target cells.Methods: Salivary EGF secretion in SS was compared to that in healthy controls using an enzyme-linked immunosorbent assay (ELISA). EGF receptor (EGFR) immunoreactive cells in the gastric corpus of healthy human subjects were analysed using immunostaining.Results: Salivary secretion of EGF was diminished in SS patients (232.4, range 52.6-618.4, vs. 756.6, range 105.3-1631.6 pg/min, p=0.002). Proton-pump positive parietal cells were mostly EGFR immunoreactive whereas very few pepsinogen I (PGI)-positive cells were EGFR positive.Conclusions: As EGF is relatively acid resistant, salivary gland-derived EGF might participate in an exo/endocrine mode of parietal cell maintenance in the gastric corpus. Deficiency of salivary gland-derived EGF in SS patients may cause impairment of gastric parietal cells resulting in exposure of immunogenic cryptic antigens and loss of immunological self-tolerance.Peer reviewe

    Diminished salivary epidermal growth factor secretion : a link between Sjogren's syndrome and autoimmune gastritis?

    Get PDF
    Objectives: Healthy human labial salivary glands produce epidermal growth factor (EGF). In Sjogren's syndrome (SS), EGF staining is diminished. SS is also associated with chronic autoimmune corpus gastritis. We therefore hypothesized that EGF secretion would be diminished in SS and that this could affect gastric target cells.Methods: Salivary EGF secretion in SS was compared to that in healthy controls using an enzyme-linked immunosorbent assay (ELISA). EGF receptor (EGFR) immunoreactive cells in the gastric corpus of healthy human subjects were analysed using immunostaining.Results: Salivary secretion of EGF was diminished in SS patients (232.4, range 52.6-618.4, vs. 756.6, range 105.3-1631.6 pg/min, p=0.002). Proton-pump positive parietal cells were mostly EGFR immunoreactive whereas very few pepsinogen I (PGI)-positive cells were EGFR positive.Conclusions: As EGF is relatively acid resistant, salivary gland-derived EGF might participate in an exo/endocrine mode of parietal cell maintenance in the gastric corpus. Deficiency of salivary gland-derived EGF in SS patients may cause impairment of gastric parietal cells resulting in exposure of immunogenic cryptic antigens and loss of immunological self-tolerance.Peer reviewe

    A relational database to identify differentially expressed genes in the endometrium and endometriosis lesions

    Get PDF
    Endometriosis is a common inflammatory estrogen-dependent gynecological disorder, associated with pelvic pain and reduced fertility in women. Several aspects of this disorder and its cellular and molecular etiology remain unresolved. We have analyzed the global gene expression patterns in the endometrium, peritoneum and in endometriosis lesions of endometriosis patients and in the endometrium and peritoneum of healthy women. In this report, we present the EndometDB, an interactive web-based user interface for browsing the gene expression database of collected samples without the need for computational skills. The EndometDB incorporates the expression data from 115 patients and 53 controls, with over 24000 genes and clinical features, such as their age, disease stages, hormonal medication, menstrual cycle phase, and the different endometriosis lesion types. Using the web-tool, the end-user can easily generate various plot outputs and projections, including boxplots, and heatmaps and the generated outputs can be downloaded in pdf-format.Availability and implementationThe web-based user interface is implemented using HTML5, JavaScript, CSS, Plotly and R. It is freely available from https://endometdb.utu.fi/

    The receptors for gibbon ape leukemia virus and amphotropic murine leukemia virus are not downregulated in productively infected cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Over the last several decades it has been noted, using a variety of different methods, that cells infected by a specific gammaretrovirus are resistant to infection by other retroviruses that employ the same receptor; a phenomenon termed receptor interference. Receptor masking is thought to provide an earlier means of blocking superinfection, whereas receptor down regulation is generally considered to occur in chronically infected cells.</p> <p>Results</p> <p>We used replication-competent GFP-expressing viruses containing either an amphotropic murine leukemia virus (A-MLV) or the gibbon ape leukemia virus (GALV) envelope. We also constructed similar viruses containing fluorescence-labeled Gag proteins for the detection of viral particles. Using this repertoire of reagents together with a wide range of antibodies, we were able to determine the presence and availability of viral receptors, and detect viral envelope proteins and particles presence on the cell surface of chronically infected cells.</p> <p>Conclusions</p> <p>A-MLV or GALV receptors remain on the surface of chronically infected cells and are detectable by respective antibodies, indicating that these receptors are not downregulated in these infected cells as previously proposed. We were also able to detect viral envelope proteins on the infected cell surface and infected cells are unable to bind soluble A-MLV or GALV envelopes indicating that receptor binding sites are masked by endogenously expressed A-MLV or GALV viral envelope. However, receptor masking does not completely prevent A-MLV or GALV superinfection.</p

    Poor correlation between large-scale environmental flow violations and freshwater biodiversity: implications for water resource management and the freshwater planetary boundary

    Get PDF
    The freshwater ecosystems around the world are degrading, such that maintaining environmental flow1 (EF) in river networks is critical to their preservation. The relationship between streamflow alterations (subsequent EF violations2) and the freshwater biodiversity response is well established at the scale of stream reaches or small basins (∼&lt;100 km2). However, it is unclear if this relationship is robust at larger scales, even though there are large-scale initiatives to legalize the EF requirement. Moreover, EFs have been used in assessing a planetary boundary3 for freshwater. Therefore, this study intends to conduct an exploratory evaluation of the relationship between EF violation and freshwater biodiversity at globally aggregated scales and for freshwater ecoregions. Four EF violation indices (severity, frequency, probability of shifting to a violated state, and probability of staying violated) and seven independent freshwater biodiversity indicators (calculated from observed biota data) were used for correlation analysis. No statistically significant negative relationship between EF violation and freshwater biodiversity was found at global or ecoregion scales. These findings imply the need for a holistic bio-geo-hydro-physical approach in determining the environmental flows. While our results thus suggest that streamflow and EF may not be the only determinant of freshwater biodiversity at large scales, they do not preclude the existence of relationships at smaller scales or with more holistic EF methods (e.g., including water temperature, water quality, intermittency, connectivity, etc.) or with other biodiversity data or metrics.</p
    corecore