19 research outputs found

    HIGH-RESOLUTION GEOMORPHOLOGICAL MAPPING OF THE SHALLOW CONTINENTAL SHELF WEST OF THE KAVALA BAY, NORTH AEGEAN

    Get PDF
    Σημαντικές γεωμορφολογικές δομές του ρηχού τμήματος της υφαλοκρηπίδας δυτικά του Κόλπου της Καβάλας χαρτογραφήθηκαν χρησιμοποιώντας τα δεδομένα από μια υδρογραφική αποτύπωση (τον Ιούνιο 2014) 320 ναυτικών μιλίων, η οποία περιελάμβανε υψηλής διακριτικότητας πολυδεσμική βαθυμετρική καταγραφή και διασκόπηση πυθμένα με σεισμική ανάκλαση. Αναγνωρίστηκε ένα σύστημα ρηγμάτων αποτελούμενο από ένα σετ δυο κυρίων κανονικών ρηγμάτων (καταγεγραμμένο μήκος και μετρημένο κατακόρυφο άλμα αυτών: 12 χλμ, 5 χλμ και > 40 μ, 25 μ, αντίστοιχα,) με έντονη επιφανειακή εκδήλωση στο θαλάσσιο πυθμένα, καθώς και τρία δευτερεύοντα ρήγματα νότια των κύριων ρηγμάτων, τα οποία φανερώνουν συνιζηματογενή τεκτονισμό. Η εντυπωσιακή διαφορά στις υφές των ιζημάτων που καλύπτουν αφενός το υποκείμενο ρηξιτέμαχος του βορειότερου κυρίου ρήγματος και αφετέρου την οροφή του νοτιότερου κυρίου ρήγματος δείχνει τη σημαντική επίδραση του τεκτονισμού στις ιζηματολογκές διεργασίες της περιοχής μελέτης. Όσον αφορά τις υπάρχουσες γεωμορφές, οι περισσότερο ενδιαφέρουσες είναι εκείνες των αμμωδών θινών στο βορειοανατολικό τμήμα της περιοχής μελέτης, ευρισκόμενες σε βάθη από 25 μ μέχρι τουλάχιστον 65 μ. Οι μεγάλες διαστάσεις τους καθώς και ο προσανατολισμός τους ως προς την ακτογραμμή υποδηλώνουν ως μηχανισμό σχηματισμού τους την δράση ισχυρών πυθμιαίων ρευμάτωνProminent geomorphological features of the shallow continental shelf west of the Kavala Bay (Loutra Eleftheron-Nea Peramos) were mapped using the data from a hydrographic survey (June 2014) of 320 nautical miles during which high resolution multibeam bathymetry and seismic-reflection subbottom profiling were carried out simultaneously. A fault zone comprised by a set of two primary sigmoidal gravity faults (recorded lengths and measured offsets: 12 km, 5 km and > 40 m, 25 m, respectively), with distinct expression on the seabed, and three other secondary gravity faults situated southern of the major faults, revealing synsedimentary tectonics, was identified. The striking difference between the texture of the footwall block sediments of the northern major fault and the texture of the sediments occupying the deep hanging wall block of the southern major fault emphasizes the impact of local tectonics on the sedimentary evolution of the study area. Concerning the observed bedforms, the most interesting were the sand dunes occurring at depths from 25 m to 65 m at least and occupying the northeast part of the study area. Their large dimensions and orientation in relation to the coastline position imply as a mechanism for their formation intense bottom-current activity

    TGF-b2 induction regulates invasiveness of theileria-transformed leukocytes and disease susceptibility

    Get PDF
    Theileria parasites invade and transform bovine leukocytes causing either East Coast fever (T. parva), or tropical theileriosis (T. annulata). Susceptible animals usually die within weeks of infection, but indigenous infected cattle show markedly reduced pathology, suggesting that host genetic factors may cause disease susceptibility. Attenuated live vaccines are widely used to control tropical theileriosis and attenuation is associated with reduced invasiveness of infected macrophages in vitro. Disease pathogenesis is therefore linked to aggressive invasiveness, rather than uncontrolled proliferation of Theileria-infected leukocytes. We show that the invasive potential of Theileria-transformed leukocytes involves TGF-b signalling. Attenuated live vaccine lines express reduced TGF-b2 and their invasiveness can be rescued with exogenous TGF-b. Importantly, infected macrophages from disease susceptible Holstein-Friesian (HF) cows express more TGF-b2 and traverse Matrigel with great efficiency compared to those from disease-resistant Sahiwal cattle. Thus, TGF-b2 levels correlate with disease susceptibility. Using fluorescence and time-lapse video microscopy we show that Theileria-infected, disease-susceptible HF macrophages exhibit increased actin dynamics in their lamellipodia and podosomal adhesion structures and develop more membrane blebs. TGF-b2-associated invasiveness in HF macrophages has a transcription-independent element that relies on cytoskeleton remodelling via activation of Rho kinase (ROCK). We propose that a TGF-b autocrine loop confers an amoeboid-like motility on Theileria-infected leukocytes, which combines with MMP-dependent motility to drive invasiveness and virulence

    Real-time quantitative monitoring of hiPSC-based model of macular degeneration on Electric Cell-substrate Impedance Sensing microelectrodes

    Get PDF
    AbstractAge-related macular degeneration (AMD) is the leading cause of blindness in the developed world. Humanized disease models are required to develop new therapies for currently incurable forms of AMD.In this work, a tissue-on-a-chip approach was developed through combining human induced pluripotent stem cells, Electric Cell–substrate Impedance Sensing (ECIS) and reproducible electrical wounding assays to model and quantitatively study AMD. Retinal Pigment Epithelium (RPE) cells generated from a patient with an inherited macular degeneration and from an unaffected sibling were used to test the model platform on which a reproducible electrical wounding assay was conducted to model RPE damage. First, a robust and reproducible real-time quantitative monitoring over a 25-day period demonstrated the establishment and maturation of RPE layers on the microelectrode arrays. A spatially controlled RPE layer damage that mimicked cell loss in AMD disease was then initiated. Post recovery, significant differences (P<0.01) in migration rates were found between case (8.6±0.46μm/h) and control cell lines (10.69±0.21μm/h). Quantitative data analysis suggested this was achieved due to lower cell–substrate adhesion in the control cell line. The ECIS cell–substrate adhesion parameter (α) was found to be 7.8±0.28Ω1/2cm for the case cell line and 6.5±0.15Ω1/2cm for the control. These findings were confirmed using cell adhesion biochemical assays. The developed disease model-on-a-chip is a powerful platform for translational studies with considerable potential to investigate novel therapies by enabling real-time, quantitative and reproducible patient-specific RPE cell repair studies

    Claudins in lung diseases

    Get PDF
    Tight junctions are the most apically localized part of the epithelial junctional complex. They regulate the permeability and polarity of cell layers and create compartments in cell membranes. Claudins are structural molecules of tight junctions. There are 27 claudins known, and expression of different claudins is responsible for changes in the electrolyte and solute permeability in cells layers. Studies have shown that claudins and tight junctions also protect multicellular organisms from infections and that some infectious agents may use claudins as targets to invade and weaken the host's defense. In neoplastic diseases, claudin expression may be up- or downregulated. Since their expression is associated with specific tumor types or with specific locations of tumors to a certain degree, they can, in a restricted sense, also be used as tumor markers. However, the regulation of claudin expression is complex involving growth factors and integrins, protein kinases, proto-oncogens and transcription factors. In this review, the significance of claudins is discussed in lung disease and development

    Organization of multiprotein complexes at cell–cell junctions

    Get PDF
    The formation of stable cell–cell contacts is required for the generation of barrier-forming sheets of epithelial and endothelial cells. During various physiological processes like tissue development, wound healing or tumorigenesis, cellular junctions are reorganized to allow the release or the incorporation of individual cells. Cell–cell contact formation is regulated by multiprotein complexes which are localized at specific structures along the lateral cell junctions like the tight junctions and adherens junctions and which are targeted to these site through their association with cell adhesion molecules. Recent evidence indicates that several major protein complexes exist which have distinct functions during junction formation. However, this evidence also indicates that their composition is dynamic and subject to changes depending on the state of junction maturation. Thus, cell–cell contact formation and integrity is regulated by a complex network of protein complexes. Imbalancing this network by oncogenic proteins or pathogens results in barrier breakdown and eventually in cancer. Here, I will review the molecular organization of the major multiprotein complexes at junctions of epithelial cells and discuss their function in cell–cell contact formation and maintenance

    Tight junctions: from simple barriers to multifunctional molecular gates

    Get PDF
    Epithelia and endothelia separate different tissue compartments and protect multicellular organisms from the outside world. This requires the formation of tight junctions, selective gates that control paracellular diffusion of ions and solutes. Tight junctions also form the border between the apical and basolateral plasma-membrane domains and are linked to the machinery that controls apicobasal polarization. Additionally, signalling networks that guide diverse cell behaviours and functions are connected to tight junctions, transmitting information to and from the cytoskeleton, nucleus and different cell adhesion complexes. Recent advances have broadened our understanding of the molecular architecture and cellular functions of tight junctions

    Forest fire retardancy evaluation of carbonate minerals using DTG and LOI

    No full text

    The effectiveness of bilateral erector spinae plane block in reducing perioperative opioid administration in patients undergoing laparoscopic cholecystectomy

    No full text
    Introduction: Laparoscopic cholecystectomy (LC), is one of the most common surgeries performed in general surgery. Most of the times, LC is accompanied by moderate to severe postoperative pain. Erector Spinae Plane Block (ESPB) is an innovative trunk block which has been used as a method of postoperative analgesia in various clinical procedures. In this study we evaluated its effectiveness as a method of perioperative analgesia, seeking to investigate whether it is effective in reducing perioperative opioid administration in patients undergoing LC. Methods: This is a double-blind, randomized, controlled, prospective study. 60 patients were randomized into Group C (ESPB with N/S 0.9%), Group D (ESPB with ropivacaine 0.375%, dexmedetomidine 1 γ/kg) and Group R (ESPB with ropivacaine 0.375%). ESPB was performed bilaterally before induction of general anesthesia, with ultrasound guidance. Statistical analysis included ANOVA, two-way ANOVA for repeated measures, Kruskal-Wallis and Spearman tests. Results: All patients remained hemodynamically stable during their hospitalization, without major complications. Statistical significance was found to exist regarding total perioperative remifentanil consumption between all three Groups. Median morphine consumption, NRS pain scores and mobilization time of the patients was found to be significantly less in patients of Group D compared with patients of Group C and in patients of Group R compared with patients of Group C. However, there was no statistically important difference between Groups D and R. Satisfaction scores were found to be statistically higher in patients of Group D when compared with patients of Group C. Conclusion: ESPB performance with administration of ropivacaine or a combination of ropivacaine and dexmedetomidine in patients undergoing LC, is an innovative, safe and simple method which contributes to the amelioration of the quality of perioperative analgesia, avoiding the complications arising from opioid administration and thus, achieving multimodal analgesia. © 2021, Pharmamed Mado Ltd. All rights reserved
    corecore