6,380 research outputs found

    Investigation of refractory dielectric for integrated circuits Second quarterly report, Dec. 1968

    Get PDF
    Process development for chemical deposition of aluminum oxide films as refractory dielectrics for integrated circuit

    Investigation of refractory dielectric for integrated circuits Third quarterly report, Feb. 1969

    Get PDF
    Research and development on refractory dielectrics for integrated circuit

    Solitons in a medium with linear dissipation and localized gain

    Full text link
    We present a variety of dissipative solitons and breathing modes in a medium with localized gain and homogeneous linear dissipation. The system posses a number of unusual properties, like exponentially localized modes in both focusing and defocusing media, the existence of modes in focusing media at negative propagation constant values, the simultaneous existence of stable symmetric and anti-symmetric localized modes when the gain landscape possesses two local maxima, as well as the existence of stable breathing solutions.Comment: 4 pages, 5 figures, to appear in Optics Letter

    Statistical multifragmentation model with discretized energy and the generalized Fermi breakup. I. Formulation of the model

    Full text link
    The Generalized Fermi Breakup recently demonstrated to be formally equivalent to the Statistical Multifragmentation Model, if the contribution of excited states are included in the state densities of the former, is implemented. Since this treatment requires the application of the Statistical Multifragmentation Model repeatedly on the hot fragments until they have decayed to their ground states, it becomes extremely computational demanding, making its application to the systems of interest extremely difficult. Based on exact recursion formulae previously developed by Chase and Mekjian to calculate the statistical weights very efficiently, we present an implementation which is efficient enough to allow it to be applied to large systems at high excitation energies. Comparison with the GEMINI++ sequential decay code shows that the predictions obtained with our treatment are fairly similar to those obtained with this more traditional model.Comment: 8 pages, 6 figure

    Effective Dielectric Tensor for Electromagnetic Wave Propagation in Random Media

    Full text link
    We derive exact strong-contrast expansions for the effective dielectric tensor \epeff of electromagnetic waves propagating in a two-phase composite random medium with isotropic components explicitly in terms of certain integrals over the nn-point correlation functions of the medium. Our focus is the long-wavelength regime, i.e., when the wavelength is much larger than the scale of inhomogeneities in the medium. Lower-order truncations of these expansions lead to approximations for the effective dielectric constant that depend upon whether the medium is below or above the percolation threshold. In particular, we apply two- and three-point approximations for \epeff to a variety of different three-dimensional model microstructures, including dispersions of hard spheres, hard oriented spheroids and fully penetrable spheres as well as Debye random media, the random checkerboard, and power-law-correlated materials. We demonstrate the importance of employing nn-point correlation functions of order higher than two for high dielectric-phase-contrast ratio. We show that disorder in the microstructure results in an imaginary component of the effective dielectric tensor that is directly related to the {\it coarseness} of the composite, i.e., local volume-fraction fluctuations for infinitely large windows. The source of this imaginary component is the attenuation of the coherent homogenized wave due to scattering. We also remark on whether there is such attenuation in the case of a two-phase medium with a quasiperiodic structure.Comment: 40 pages, 13 figure

    Time-Symmetric Quantum Theory of Smoothing

    Full text link
    Smoothing is an estimation technique that takes into account both past and future observations, and can be more accurate than filtering alone. In this Letter, a quantum theory of smoothing is constructed using a time-symmetric formalism, thereby generalizing prior work on classical and quantum filtering, retrodiction, and smoothing. The proposed theory solves the important problem of optimally estimating classical Markov processes coupled to a quantum system under continuous measurements, and is thus expected to find major applications in future quantum sensing systems, such as gravitational wave detectors and atomic magnetometers.Comment: 4 pages, 1 figure, v2: accepted by PR

    Quantum temporal correlations and entanglement via adiabatic control of vector solitons

    Get PDF
    It is shown that optical pulses with a mean position accuracy beyond the standard quantum limit can be produced by adiabatically expanding an optical vector soliton followed by classical dispersion management. The proposed scheme is also capable of entangling positions of optical pulses and can potentially be used for general continuous-variable quantum information processing.Comment: 5 pages, 1 figure, v2: accepted by Physical Review Letters, v3: minor editing and shortening, v4: included the submitted erratu
    • …
    corecore