208 research outputs found

    A comparative study of postoperative analgesic efficacy between TAP block with wound infiltration in open gynaecological surgeries

    Get PDF
    Background: Gynaecological surgeries are performed by abdominal incision is common and post-operative pain and discomfort is always anticipated. TAP block is a regional anaesthetic technique which blocks the abdominal neural afferents by administrating local anaesthetic drugs into the neuro-fascial plane. The other method for postoperative analgesia is surgical wound infiltration with local anaesthetic drugs. The aim of this study was to evaluate the post-operative analgesic efficacy of TAP block versus wound infiltration in gynaecological surgeries.Methods: The study was a prospective randomized study conducted on patients undergoing open gynaecological surgeries, conducted at the Government medical college and ESI hospital, Coimbatore. The study was initiated after obtaining an ethical clearance from the institution. Group A: patients who underwent bilateral TAP block with 0.3 ml/kg 0.25% Bupivacaine on each side. Group B: patients who received wound infiltration of 0.25% Bupivacaine 0.6ml/kg.Results: TAP block provided superior analgesic effect than the surgical site infiltration group, without significant changes in the hemodynamic parameters. The duration of analgesia was longer and the need of Tramadol in the postoperative period was found to be lesser in the TAP block group as compared to wound infiltration group.Conclusions: The TAP block is an effective and safe technique for postoperative analgesia for gynaecological surgeries than compared to the surgical wound infiltration. The requirement of Tramadol as a postoperative analgesia was less with TAP block compared to surgical wound infiltration

    Environmental contaminants and male infertility: Effects and mechanisms

    Get PDF
    The escalating prevalence of male infertility and decreasing trend in sperm quality have been correlated with rapid industrialisation and the associated discharge of an excess of synthetic substances into the environment. Humans are inevitably exposed to these ubiquitously distributed environmental contaminants, which possess the ability to intervene with the growth and function of male reproductive organs. Several epidemiological reports have correlated the blood and seminal levels of environmental contaminants with poor sperm quality. Numerous in vivo and in vitro studies have been conducted to investigate the effect of various environmental contaminants on spermatogenesis, steroidogenesis, Sertoli cells, blood–testis barrier, epididymis and sperm functions. The reported reprotoxic effects include alterations in the spermatogenic cycle, increased germ cell apoptosis, inhibition of steroidogenesis, decreased Leydig cell viability, impairment of Sertoli cell structure and function, altered expression of steroid receptors, increased permeability of blood–testis barrier, induction of peroxidative and epigenetic alterations in spermatozoa resulting in poor sperm quality and function

    DOA-Detection Guided NLMS Adaptive Array

    Get PDF
    In various adaptive array applications, the directions of arrival (DOAs) of the desired user signal are sparsely separated. As such, the desired beam-pattern has a sparse structure. We propose an NLMS based adaptive algorithm which exploits this sparse DOA structure and provides significantly improved convergence and tracking capabilities

    Transient Expression of Hemagglutinin Antigen from Low Pathogenic Avian Influenza A (H7N7) in Nicotiana benthamiana

    Get PDF
    The influenza A virus is of global concern for the poultry industry, especially the H5 and H7 subtypes as they have the potential to become highly pathogenic for poultry. In this study, the hemagglutinin (HA) of a low pathogenic avian influenza virus of the H7N7 subtype isolated from a Swedish mallard Anas platyrhynchos was sequenced, characterized and transiently expressed in Nicotiana benthamiana. Recently, plant expression systems have gained interest as an alternative for the production of vaccine antigens. To examine the possibility of expressing the HA protein in N. benthamiana, a cDNA fragment encoding the HA gene was synthesized de novo, modified with a Kozak sequence, a PR1a signal peptide, a C-terminal hexahistidine (6×His) tag, and an endoplasmic retention signal (SEKDEL). The construct was cloned into a Cowpea mosaic virus (CPMV)-based vector (pEAQ-HT) and the resulting pEAQ-HT-HA plasmid, along with a vector (pJL3:p19) containing the viral gene-silencing suppressor p19 from Tomato bushy stunt virus, was agro-infiltrated into N. benthamiana. The highest gene expression of recombinant plant-produced, uncleaved HA (rHA0), as measured by quantitative real-time PCR was detected at 6 days post infiltration (dpi). Guided by the gene expression profile, rHA0 protein was extracted at 6 dpi and subsequently purified utilizing the 6×His tag and immobilized metal ion adsorption chromatography. The yield was 0.2 g purified protein per kg fresh weight of leaves. Further molecular characterizations showed that the purified rHA0 protein was N-glycosylated and its identity confirmed by liquid chromatography-tandem mass spectrometry. In addition, the purified rHA0 exhibited hemagglutination and hemagglutination inhibition activity indicating that the rHA0 shares structural and functional properties with native HA protein of H7 influenza virus. Our results indicate that rHA0 maintained its native antigenicity and specificity, providing a good source of vaccine antigen to induce immune response in poultry species

    Proteostasis Dysregulation in Pancreatic Cancer

    Get PDF
    The most common form of pancreatic cancer, pancreatic ductal adenocarcinoma (PDAC), has a dismal 5-year survival rate of less than 5%. Radical surgical resection, in combination with adjuvant chemotherapy, provides the best option for long-term patient survival. However, only approximately 20% of patients are resectable at the time of diagnosis, due to locally advanced or metastatic disease. There is an urgent need for the identification of new, specific, and more sensitive biomarkers for diagnosis, prognosis, and prediction to improve the treatment options for pancreatic cancer patients. Dysregulation of proteostasis is linked to many pathophysiological conditions, including various types of cancer. In this review, we report on findings relating to the main cellular protein degradation systems, the ubiquitin-proteasome system (UPS) and autophagy, in pancreatic cancer. The expression of several components of the proteolytic network, including E3 ubiquitinligases and deubiquitinating enzymes, are dysregulated in PDAC, which accounts for approximately 90% of all pancreatic malignancies. In the future, a deeper understanding of the emerging role of proteostasis in pancreatic cancer has the potential to provide clinically relevant biomarkers and new strategies for combinatorial therapeutic options to better help treat the patients.Peer reviewe

    Fc-Optimized Anti-CD25 Depletes Tumor-Infiltrating Regulatory T Cells and Synergizes with PD-1 Blockade to Eradicate Established Tumors

    Get PDF
    CD25 is expressed at high levels on regulatory T (Treg) cells and was initially proposed as a target for cancer immunotherapy. However, anti-CD25 antibodies have displayed limited activity against established tumors. We demonstrated that CD25 expression is largely restricted to tumor-infiltrating Treg cells in mice and humans. While existing anti-CD25 antibodies were observed to deplete Treg cells in the periphery, upregulation of the inhibitory Fc gamma receptor (FcγR) IIb at the tumor site prevented intra-tumoral Treg cell depletion, which may underlie the lack of anti-tumor activity previously observed in pre-clinical models. Use of an anti-CD25 antibody with enhanced binding to activating FcγRs led to effective depletion of tumor-infiltrating Treg cells, increased effector to Treg cell ratios, and improved control of established tumors. Combination with anti-programmed cell death protein-1 antibodies promoted complete tumor rejection, demonstrating the relevance of CD25 as a therapeutic target and promising substrate for future combination approaches in immune-oncology
    • …
    corecore