190 research outputs found

    Stability of Triple Star Systems with Highly Inclined Orbits

    Full text link
    It is well established that certain detached eclipsing binary stars exhibit apsidal motions whose value is in disagreement with with calculated deviations from Keplerian motion based on tidal effects and the general theory of relativity. Although many theoretical senarios have been demonstrated to bring calculations into line with observations, all have seemed unlikely for various reasons. In particular, it has been established that the hypothesis of a third star in an orbit almost perpendicular to the orbital plane of the close binary system can explain the anomalous motion in at least some cases. The stability of triple star systems with highly inclined orbits has been in doubt, however. We have found conditions which allow the long term stability of such systems so that the third body hypothesis now seems a likely resolution of the apsidal motion problem. We apply our stability criteria to the cases of AS Cam and DI Her and recommend observations at the new Keck interferometer which should be able to directly observe the third bodies in these systems.Comment: edited to match published versio

    Regularization of the circular restricted three-body problem using 'similar' coordinate systems

    Full text link
    The regularization of a new problem, namely the three-body problem, using 'similar' coordinate system is proposed. For this purpose we use the relation of 'similarity', which has been introduced as an equivalence relation in a previous paper (see \cite{rom11}). First we write the Hamiltonian function, the equations of motion in canonical form, and then using a generating function, we obtain the transformed equations of motion. After the coordinates transformations, we introduce the fictitious time, to regularize the equations of motion. Explicit formulas are given for the regularization in the coordinate systems centered in the more massive and the less massive star of the binary system. The 'similar' polar angle's definition is introduced, in order to analyze the regularization's geometrical transformation. The effect of Levi-Civita's transformation is described in a geometrical manner. Using the resulted regularized equations, we analyze and compare these canonical equations numerically, for the Earth-Moon binary system.Comment: 24 pages, 7 figures; Accepted for publication in Astrophysics and Space Scienc

    Earth-Moon Lagrangian points as a testbed for general relativity and effective field theories of gravity

    Get PDF
    We first analyse the restricted four-body problem consisting of the Earth, the Moon and the Sun as the primaries and a spacecraft as the planetoid. This scheme allows us to take into account the solar perturbation in the description of the motion of a spacecraft in the vicinity of the stable Earth-Moon libration points L4 and L5 both in the classical regime and in the context of effective field theories of gravity. A vehicle initially placed at L4 or L5 will not remain near the respective points. In particular, in the classical case the vehicle moves on a trajectory about the libration points for at least 700 days before escaping away. We show that this is true also if the modified long-distance Newtonian potential of effective gravity is employed. We also evaluate the impulse required to cancel out the perturbing force due to the Sun in order to force the spacecraft to stay precisely at L4 or L5. It turns out that this value is slightly modified with respect to the corresponding Newtonian one. In the second part of the paper, we first evaluate the location of all Lagrangian points in the Earth-Moon system within the framework of general relativity. For the points L4 and L5, the corrections of coordinates are of order a few millimeters and describe a tiny departure from the equilateral triangle. After that, we set up a scheme where the theory which is quantum corrected has as its classical counterpart the Einstein theory, instead of the Newtonian one. In other words, we deal with a theory involving quantum corrections to Einstein gravity, rather than to Newtonian gravity. By virtue of the effective-gravity correction to the long-distance form of the potential among two point masses, all terms involving the ratio between the gravitational radius of the primary and its separation from the planetoid get modified. Within this framework, for the Lagrangian points of stable equilibrium, we find quantum corrections of order two millimeters, whereas for Lagrangian points of unstable equilibrium we find quantum corrections below a millimeter. In the latter case, for the point L1, general relativity corrects Newtonian theory by 7.61 meters, comparable, as an order of magnitude, with the lunar geodesic precession of about 3 meters per orbit. The latter is a cumulative effect accurately measured at the centimeter level through the lunar laser ranging positioning technique. Thus, it is possible to study a new laser ranging test of general relativity to measure the 7.61-meter correction to the L1 Lagrangian point, an observable never used before in the Sun-Earth-Moon system. Performing such an experiment requires controlling the propulsion to precisely reach L1, an instrumental accuracy comparable to the measurement of the lunar geodesic precession, understanding systematic effects resulting from thermal radiation and multi-body gravitational perturbations. This will then be the basis to consider a second-generation experiment to study deviations of effective field theories of gravity from general relativity in the Sun-Earth-Moon system

    Nearby low-mass triple system GJ795

    Get PDF
    We report the results of our optical speckle-interferometric observations of the nearby triple system GJ795 performed with the 6-m BTA telescope with diffraction-limited angular resolution. The three components of the system were optically resolved for the first time. Position measurements allowed us to determine the elements of the inner orbit of the triple system. We use the measured magnitude differences to estimate the absolute magnitudes and spectral types of the components of the triple: MVAaM_{V}^{Aa}=7.31±\pm0.08, MVAbM_{V}^{Ab}=8.66±\pm0.10, MVBM_{V}^{B}=8.42±\pm0.10, SpAaSp_{Aa} \approxK5, SpAbSp_{Ab} \approxK9, SpBSp_{B} \approxK8. The total mass of the system is equal to ΣMAB\Sigma\mathcal{M}_{AB}=1.69±0.27M\pm0.27\mathcal{M}_{\odot}. We show GJ795 to be a hierarchical triple system which satisfies the empirical stability criteria.Comment: 6 pages, 2 figures, published in Astrophysical Bulleti

    Quantum effects on Lagrangian points and displaced periodic orbits in the Earth-Moon system

    Get PDF
    Recent work in the literature has shown that the one-loop long distance quantum corrections to the Newtonian potential imply tiny but observable effects in the restricted three-body problem of celestial mechanics, i.e., at the Lagrangian libration points of stable equilibrium the planetoid is not exactly at equal distance from the two bodies of large mass, but the Newtonian values of its coordinates are changed by a few millimeters in the Earth-Moon system. First, we assess such a theoretical calculation by exploiting the full theory of the quintic equation, i.e., its reduction to Bring-Jerrard form and the resulting expression of roots in terms of generalized hypergeometric functions. By performing the numerical analysis of the exact formulas for the roots, we confirm and slightly improve the theoretical evaluation of quantum corrected coordinates of Lagrangian libration points of stable equilibrium. Second, we prove in detail that also for collinear Lagrangian points the quantum corrections are of the same order of magnitude in the Earth-Moon system. Third, we discuss the prospects to measure, with the help of laser ranging, the above departure from the equilateral triangle picture, which is a challenging task. On the other hand, a modern version of the planetoid is the solar sail, and much progress has been made, in recent years, on the displaced periodic orbits of solar sails at all libration points, both stable and unstable. The present paper investigates therefore, eventually, a restricted three-body problem involving Earth, Moon and a solar sail. By taking into account the one-loop quantum corrections to the Newtonian potential, displaced periodic orbits of the solar sail at libration points are again found to exist

    A Motivating Exploration on Lunar Craters and Low-Energy Dynamics in the Earth -- Moon System

    Full text link
    It is known that most of the craters on the surface of the Moon were created by the collision of minor bodies of the Solar System. Main Belt Asteroids, which can approach the terrestrial planets as a consequence of different types of resonance, are actually the main responsible for this phenomenon. Our aim is to investigate the impact distributions on the lunar surface that low-energy dynamics can provide. As a first approximation, we exploit the hyberbolic invariant manifolds associated with the central invariant manifold around the equilibrium point L_2 of the Earth - Moon system within the framework of the Circular Restricted Three - Body Problem. Taking transit trajectories at several energy levels, we look for orbits intersecting the surface of the Moon and we attempt to define a relationship between longitude and latitude of arrival and lunar craters density. Then, we add the gravitational effect of the Sun by considering the Bicircular Restricted Four - Body Problem. As further exploration, we assume an uniform density of impact on the lunar surface, looking for the regions in the Earth - Moon neighbourhood these colliding trajectories have to come from. It turns out that low-energy ejecta originated from high-energy impacts are also responsible of the phenomenon we are considering.Comment: The paper is being published in Celestial Mechanics and Dynamical Astronomy, vol. 107 (2010

    Three-Body Dynamics and Self-Powering of an Electrodynamic Tether in a Plasmasphere

    Get PDF
    The dynamics of an electrodynamic tether in a three-body gravitational environment are investigated. In the classical two-body scenario the extraction of power is at the expense of orbital kinetic energy. As a result of power extraction, an electrodynamic tether satellite system loses altitude and deorbits. This concept has been proposed and well investigated in the past, for example for orbital debris mitigation and spent stages reentry. On the other hand, in the three-body scenario an electrodynamic tether can be placed in an equilibrium position fixed with respect to the two primary bodies without deorbiting, and at the same time generate power for onboard use. The appearance of new equilibrium positions in the perturbed three-body problem allow this to happen as the electrical power is extracted at the expenses of the plasma corotating with the primary body. Fundamental differences between the classical twobody dynamics and the new phenomena appearing in the circular restricted three-body problem perturbed by the electrodynamic force of the electrodynamic tether are shown in the paper. An interesting application of an electrodynamic tether placed in the Jupiter plasma torus is then considered, in which the electrodynamic tether generates useful electrical power of about 1 kW with a 20-km-long electrodynamic tether from the environmental plasma without losing orbital energy

    Periodic orbits in the restricted three-body problem and Arnold's J+J^+-invariant

    Get PDF
    We apply Arnold's theory of generic smooth plane curves to Stark-Zeeman systems. This is a class of Hamiltonian dynamical systems that describes the dynamics of an electron in an external electric and magnetic field, and includes many systems from celestial mechanics. Based on Arnold's J+J^+-invariant, we introduce invariants of periodic orbits in planar Stark-Zeeman systems and study their behaviour.Comment: 36 Pages, 16 Figure

    Black Hole Binary Formation in the Expanding Universe --- Three Body Problem Approximation ---

    Get PDF
    We study black hole MACHO binary formation through three-body interactions in the early universe at t105t\sim 10^{-5}s. The probability distribution functions of the eccentricity and the semimajor axis of binaries as well as of the coalescence time are obtained assuming that the black holes are randomly formed in space. We confirm that the previous order-of-magnitude estimate for the binary parameters is valid within 50\sim 50% error. We find that the coalescence rate of the black hole MACHO binaries is 5×102×2±1\sim 5 \times 10^{-2} \times 2^{\pm 1} events/year/galaxy taking into consideration several possible factors which may affect this estimate. This suggests that the event rate of coalescing binary black holes will be at least several events per year within 15 Mpc. The first LIGO/VIRGO interferometers in 2001 will be able to verify whether the MACHOs are black holes or not.Comment: Revtex, 25 pages, 10 figures, to appear in PR

    Easily retrievable objects among the NEO population

    Get PDF
    Asteroids and comets are of strategic importance for science in an effort to understand the formation, evolution and composition of the Solar System. Near-Earth Objects (NEOs) are of particular interest because of their accessibility from Earth, but also because of their speculated wealth of material resources. The exploitation of these resources has long been discussed as a means to lower the cost of future space endeavours. In this paper, we consider the currently known NEO population and define a family of so-called Easily Retrievable Objects (EROs), objects that can be transported from accessible heliocentric orbits into the Earth’s neighbourhood at affordable costs. The asteroid retrieval transfers are sought from the continuum of low energy transfers enabled by the dynamics of invariant manifolds; specifically, the retrieval transfers target planar, vertical Lyapunov and halo orbit families associated with the collinear equilibrium points of the Sun-Earth Circular Restricted Three Body problem. The judicious use of these dynamical features provides the best opportunity to find extremely low energy Earth transfers for asteroid material. A catalogue of asteroid retrieval candidates is then presented. Despite the highly incomplete census of very small asteroids, the ERO catalogue can already be populated with 12 different objects retrievable with less than 500 m/s of Δv. Moreover, the approach proposed represents a robust search and ranking methodology for future retrieval candidates that can be automatically applied to the growing survey of NEOs
    corecore