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Abstract

Recent work in the literature has shown that the one-loop long distance quantum corrections to

the Newtonian potential imply tiny but observable effects in the restricted three-body problem of

celestial mechanics, i.e., at the Lagrangian libration points of stable equilibrium the planetoid is

not exactly at equal distance from the two bodies of large mass, but the Newtonian values of its

coordinates are changed by a few millimeters in the Earth-Moon system. First, we assess such a

theoretical calculation by exploiting the full theory of the quintic equation, i.e., its reduction to

Bring-Jerrard form and the resulting expression of roots in terms of generalized hypergeometric

functions. By performing the numerical analysis of the exact formulas for the roots, we confirm

and slightly improve the theoretical evaluation of quantum corrected coordinates of Lagrangian

libration points of stable equilibrium. Second, we prove in detail that also for collinear Lagrangian

points the quantum corrections are of the same order of magnitude in the Earth-Moon system.

Third, we discuss the prospects to measure, with the help of laser ranging, the above departure

from the equilateral triangle picture, which is a challenging task. On the other hand, a modern

version of the planetoid is the solar sail, and much progress has been made, in recent years, on

the displaced periodic orbits of solar sails at all libration points, both stable and unstable. The

present paper investigates therefore, eventually, a restricted three-body problem involving Earth,

Moon and a solar sail. By taking into account the one-loop quantum corrections to the Newtonian

potential, displaced periodic orbits of the solar sail at libration points are again found to exist.
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I. INTRODUCTION

From the point of view of modern theoretical physics, the logical need for a quantum

theory of gravity is suggested by the Einstein equations themselves, which tell us that gravity

couples to Tµν , the energy-momentum tensor of matter, in a diffeomorphism-invariant way,

by virtue of the tensor equations [1, 2]

Rµν −
1

2
gµνR =

8πG

c4
Tµν . (1.1)

When Einstein arrived at these equations, although he had already understood that the

classical Maxwell theory of electromagnetic phenomena is not valid in all circumstances, the

only known forms of Tµν were classical, e.g., the energy-momentum tensor of a relativistic

fluid, or even just the case of vacuum Einstein equations, for which Tµν vanishes. In due

course, it was realized that matter fields are quantum fields in the first place (e.g., a massive

Dirac field, or spinor electrodynamics). The quantum fields are operator-valued distribu-

tions [3], for which a regularization and renormalization procedure is necessary and even

fruitful. However, the mere replacement of Tµν by its regularized and renormalized form

〈Tµν〉 on the right-hand side of Eq. (1.1) leads to a hybrid scheme, because the classical

Einstein tensor Rµν − 1
2
gµνR is affected by the coupling to 〈Tµν〉. The question then arises

whether the appropriate, full quantum theory of gravity should have field-theoretical nature

or should involve, instead, other structures (e.g., strings [4] or loops [5] or twistors [6]),

and at least 16 respectable approaches [7] have been developed so far in the literature. To

make such theories truly physical, their predictions should be checked against observations.

For example, applications of the covariant theory lead to detailed predictions for the cross

sections of various scattering processes [8], but such phenomena (if any) occur at energy

scales inaccessible to observations, and also the effects of Planck-scale physics on cosmology,

e.g., the cosmic microwave background radiation and its anisotropy spectrum [9–13], are not

yet easily accessible to observations, although cosmology offers possibly the best chances for

testing quantum gravity [14].

Recently, inspired by the work in Refs. [15–22] on effective field theories of gravity, where

it is shown that the leading (i.e., one-loop) long distance quantum corrections to the New-

tonian potential are entirely ruled by the Einstein-Hilbert part of the full action functional,

some of us [23, 24] have assumed that such a theoretical analysis can be applied to the
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long distances and macroscopic bodies occurring in celestial mechanics [25–27]. More pre-

cisely, the Newtonian potential between two bodies of masses mA and mB receives quantum

corrections leading to [22]

VQ(r) = −GmAmB

r

(

1 +
k1

r
+
k2

r2

)

+ O(G2), (1.2)

where [23]

k1 ≡ κ1
G(mA +mB)

c2
, (1.3)

k2 ≡ κ2
G~

c3
= κ2(lP )2. (1.4)

Equation (1.2) implies that, ∀ε > 0, there exists an r0 value of r such that
∣

∣

∣

∣

VQ(r) +
GmAmB

r

(

1 +
k1

r
+
k2

r2

)∣

∣

∣

∣

< ε, ∀r > r0. (1.5)

This feature will play an important role in our concluding remarks in Sec. V.

We also stress that the dimensionless parameter κ1 depends on the dimensionless parame-

ter κ2. In other words, k1 is a post-Newtonian term which only depends on classical physical

constants, but its weight, expressed by the real number κ1, is affected by the calculational

procedure leading to the fully quantum term k2, where the real number κ2 weighs the Planck

length squared. More precisely, the perturbative expansion involves only integer powers of

Newton’s constant G:

VQ(r) ∼ −GmAmB

r

(

1 +

∞
∑

p=1

fp(r)G
p

)

∼ −GmAmB

r

(

1 +

∞
∑

n=1

kn

rn

)

, (1.6)

where, upon denoting by LA and LB the gravitational radii LA ≡ GmA

c2
, LB ≡ GmB

c2
, one has

the coefficients kn = kn(LA + LB, (lP )2). At one loop, i.e., to linear order in G, where

f1(r) = κ1
(mA +mB)

c2
1

r
+ κ2

~

c3
1

r2
, (1.7)

we can only have the contribution (LA+LB)
r

with weight equal to the real number κ1, and

the contribution (lP )2

r2 with weight equal to the real number κ2. Although the term (lP )2

r2 is

overwhelmed by the term (LA+LB)
r

, the two are inextricably intertwined because κ1 is not a

free real parameter but depends on κ2: both κ1 and κ2 result from loop diagrams. Thus,

the one-loop long distance quantum correction is the whole term

f1(r)G =
k1

r
+
k2

r2
= κ1

(LA + LB)

r
+ κ2

(lP )2

r2
, (1.8)
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where κ1 takes a certain value because there exists a nonvanishing value of κ2. The authors

of Ref. [22] found the numerical values

κ1 = 3, κ2 =
41

10π
. (1.9)

The work in Ref. [23] considered the application of Eqs. (1.2)-(1.4) and (1.9) to the circular

restricted three-body problem of celestial mechanics, in which two bodies A and B of masses

α and β, respectively, with α > β, move in such a way that the orbit of B relative to A is

circular, and hence both A and B move along circular orbits around their center of mass C

which moves in a straight line or is at rest, while a third body, the planetoid P , of mass m

much smaller than α and β, is subject to their gravitational attraction, and one wants to

evaluate the motion of the planetoid. On taking rotating axes1 with center of mass C as

origin, distance AB denoted by l, and angular velocity ω given by

ω =

√

G(α+ β)

l3
, (1.10)

one has, with the notation in Fig. 1, that the quantum corrected effective potential for the

circular restricted three-body problem is given by GU , where [23]

U =
1

2

(α+ β)

l3
(x2 + y2) +

α

r

(

1 +
k1

r
+
k2

r2

)

+
β

s

(

1 +
k3

s
+
k2

s2

)

, (1.11)

where r and s are the distances AP and BP , respectively, while here

k1 ≡ κ1
G(m+ α)

c2
, k3 ≡ κ3

G(m+ β)

c2
, κ1 = κ3 = 3. (1.12)

The equilibrium points are found by studying the gradient of U and evaluating its zeros.

There exist indeed five zeros of gradU [23]. Three of them correspond to collinear libration

points L1, L2, L3 of unstable equilibrium, while the remaining two describe configurations of

stable equilibrium at the points denoted by L4, L5. The simple but nontrivial idea in Refs.

[23, 24] was that, even though the quantum corrections in (1.2) involve small quantities,

the analysis of stable equilibrium (to linear order in perturbations) might lead to testable

departures from Newtonian theory, being related to the gradient of U , and to the second

derivatives of U evaluated at the zeros of gradU . The quantum corrected Lagrange points

L4 and L5 have coordinates (x(l), y+(l)) and (x(l), y−(l)), respectively, where

x(l) =
(r2(l) − s2(l) + b2 − a2)

2(a+ b)
, (1.13)

1 To be self-consistent, some minor repetition of the text in Ref. [23] is unavoidable.
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FIG. 1: The figure shows the two bodies of large mass, A and B, the center of mass C, and the

planetoid at P .

y±(l) = ±
√

r2(l) − x2(l) − 2ax(l) − a2, (1.14)

where r(l) ≡ 1
w(l)

, s(l) ≡ 1
u(l)

, w(l) ans u(l) being the real solutions of an algebraic equation

of fifth degree (see Sec. II). Interestingly, r(l) 6= s(l), and hence to the equilateral libration

points of Newtonian celestial mechanics there correspond points no longer exactly at vertices

of an equilateral triangle. For the Earth-Moon-satellite system, the work in Ref. [24] has

found

xQ − xC ≈ 8.8 mm, |yQ| − |yC| ≈ 5.2 mm, (1.15)

where xQ (resp. xC) is the quantum corrected (resp. classical) value of x(l) in (1.13), and

the same for yQ and yC obtainable from (1.14). Remarkably, the values in (1.15) are well

accessible to the modern astrometric techniques [28].
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On the other hand, much progress has been made along the years on modern models

of planetoids and their displaced periodic orbits at all Lagrange points L1, L2, L3, L4, L5,

to linear order in the variational equations for Newtonian theory. In particular, a mod-

ern version of planetoid is a solar sail, which is propelled by reflecting solar photons and

therefore can transform the momentum of photons into a propulsive force. Solar sailing

technology appears as a promising form of advanced spacecraft propulsion [29–33], which

can enable exciting new space-science mission concepts such as solar system exploration and

deep space observation. Although solar sailing has been considered as a practical means

of spacecraft propulsion only relatively recently, the fundamental ideas had been already

developed towards the end of the previous century [34].

Solar sails can also be used for highly nonKeplerian orbits, such as closed orbits displaced

high above the ecliptic plane [35]. Solar sails are especially suited for such nonKeplerian

orbits, since they can apply a propulsive force continuously. This makes it possible to

consider some exciting and unique trajectories. In such trajectories, a sail can be used as

a communication satellite for high latitudes. For example, the orbital plane of the sail can

be displaced above the orbital plane of the Earth, so that the sail can stay fixed above

the Earth at some distance, if the orbital periods are equal. Orbits around the collinear

points of the Earth-Moon system are also of great interest because their unique positions

are advantageous for several important applications in space mission design [36–41].

Over the last few dacades, several authors have tried to determine more accurate approx-

imations of such equilibrium points [42]. Such (quasi-)Halo orbits were first studied in Refs.

[42–47]. Halo orbits near the collinear libration points in the Earth-Moon system are of

great interest, in particular around the L1 and L2 points, because of their unique positions.

However, a linear analysis shows that the collinear libration points L1, L2 and L3 are of the

type saddle×center×center, leading to an instability in their vicinity, whereas the equilateral

equilibrium points L4 and L5 are stable, in that they are of the type center×center×center.

Although the libration points L4 and L5 are naturally stable and require a small acceleration,

the disadvantage is the longer communication path length from the lunar pole to the sail.

If the orbit maintains visibility from Earth, a spacecraft on it (near the L2 point) can be

used to provide communications between the equatorial regions of the Earth and the polar

regions of the Moon. The establishment of a bridge for radio communications is crucial

for forthcoming space missions, which plan to use the lunar poles. Displaced nonKeplerian
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orbits near the Earth-Moon libration points have been investigated in Refs. [29–33, 48].

This brief outline shows therefore that the analysis of libration points does not belong just

to the history of celestial mechanics, but plays a crucial role in modern investigations of

space mission design.

Section II studies in detail the algebraic equation of fifth degree for the evaluation of

noncollinear libration points L4 and L5, by first passing to dimensionless units and then

exploiting the rich mathematical theory of quintic equations and their roots. Section III

derives and solves the algebraic equation of ninth degree for the evaluation of quantum

corrections to collinear Lagrangian points L1, L2, L3. Section IV outlines the prospects to

measure the quantum corrected coordinates obtained in Sec. II with the help of laser ranging.

Section V evaluates displaced periodic orbits at the quantum-corrected Lagrange points L4

and L5, and a detailed comparison with the results of Newtonian celestial mechanics is

also made. Concluding remarks and open problems are presented in Sec. VI, while the

Appendices describe relevant background material on the theory of algebraic equations.

II. ALGEBRAIC EQUATIONS OF FIFTH DEGREE FOR w(l) AND u(l)

In Ref. [23] it has been shown that the gradU = 0 condition at noncollinear libration

points leads to the algebraic equations of fifth degree

w5 + ζ4w
4 + ζ3w

3 + ζ0 = 0, (2.1)

u5 + ζ̃4u
4 + ζ̃3u

3 + ζ̃0 = 0, (2.2)

where

ζ4 =
2

3

κ1

κ2

G(m+ α)

c2l2P
, ζ3 =

1

3κ2

1

l2P
, ζ0 = − 1

3κ2

1

l2P l
3
, (2.3)

ζ̃4 =
2

3

κ1

κ2

G(m+ β)

c2l2P
, ζ̃3 = ζ3, ζ̃0 = ζ0. (2.4)

Such formulas tell us that it is enough to focus on Eq. (2.1), say, where, to exploit the

mathematical theory of quintic equations, we pass to dimensionless units by defining

w =
1

r
≡ γ

lP
, (2.5)

where γ is a real number to be determined. The quintic equation obeyed by γ is therefore

γ5 + ρ4γ
4 + ρ3γ

3 + ρ0 = 0, (2.6)
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where ρ4, ρ3, ρ0 are all dimensionless and read as

ρ4 ≡ ζ4lP =
2

3

κ1

κ2

G(m+ α)

c2lP
, (2.7)

ρ3 ≡ ζ3l
2
P =

1

3κ2
, (2.8)

ρ0 ≡ ζ0l
5
P = − 1

3κ2

(

lP

l

)3

= −ρ3

(

lP

l

)3

. (2.9)

At this stage, we can exploit the results of Appendix A, by virtue of which Eq. (2.6) can be

brought into the Bring-Jerrard [49, 50] form of quintic equations

γ5 + d1γ + d0 = 0. (2.10)

Since we are going to need the roots of the quintic up to the ninth or tenth decimal digit, the

form (2.10) of the quintic will turn out to be very useful, because it leads to exact formulas

for the roots which are then evaluated numerically, which is possibly better than solving

numerically the quintic from the beginning. Hermite [51] proved that this equation can be

solved in terms of elliptic functions, but we use the even more manageable formulas for the

roots displayed in Ref. [52]. For this purpose, the crucial role is played by the number

σ ≡ 3125

256

(−d0)
4

(−d1)5
. (2.11)

We can further simplify Eq. (2.10) by rescaling γ according to

γ = χγ̃. (2.12)

The quintic for γ̃ is then

γ̃5 +
d1

χ4
γ̃ +

d0

χ5
= 0. (2.13)

One can choose χ in such a way that

−d1

χ4
= 1 =⇒ χ = χ(d1) = (−d1)

1

4 , (2.14)

and the corresponding σ of (2.11) reads as

σ̃ =
3125

256

(

− d0

(χ(d1))5

)4

= σ. (2.15)

If |σ̃| < 1, which is the case that holds in the Earth-Moon system by virtue of the numerical

results for d0 and d1 obtained from the algorithm of Appendix A, then the analysis of Ref.
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[52] shows that the five roots of the quintic (2.13), here written as γ̃5 − γ̃ − β̃ = 0, are

obtained from the parameter

β̃ ≡ − d0

(χ(d1))5
(2.16)

occurring in σ̃, and from hypergeometric functions of order 4, according to [52]















γ̃1

γ̃2

γ̃3

γ̃4















=















i β̃

4
5
32

iβ̃2 − 5
32
β̃3

−1 β̃

4
5
32
β̃2 5

32
β̃3

−i β̃

4
− 5

32
iβ̃2 − 5

32
β̃3

1 β̃

4
− 5

32
β̃2 5

32
β̃3





























F0(σ̃)

F1(σ̃)

F2(σ̃)

F3(σ̃)















, (2.17)

γ̃5 = −β̃F1(σ̃), (2.18)

where, having defined the higher hypergeometric function

F : σ̃ → F (σ̃) ≡ F





a1, a2, ..., an−2, an−1

b1, b2, ..., bn−2, σ̃



 =

∞
∑

s=0

Csσ̃
s, (2.19)

with the coefficients evaluated according to the rules

C0 ≡ 1, Cs ≡
(a1, s)(a2, s)...(an−2, s)(an−1, s)

(1, s)(b1, s)...(bn−3, s)(bn−2, s)
, (2.20)

(λ, µ) ≡ λ(λ+ 1)(λ+ 2)...(λ+ µ− 1), (2.21)

one has

F0(σ̃) ≡ F





− 1
20
, 3

20
, 7

20
, 11

20

1
4
, 1

2
, 3

4
, σ̃



 , (2.22)

F1(σ̃) ≡ F





1
5
, 2

5
, 3

5
, 4

5

1
2
, 3

4
, 5

4
, σ̃



 , (2.23)

F2(σ̃) ≡ F





9
20
, 13

20
, 17

20
, 21

20

3
4
, 5

4
, 3

2
, σ̃



 , (2.24)

F3(σ̃) ≡ F





7
10
, 9

10
, 11

10
, 13

10

5
4
, 3

2
, 7

4
, σ̃



 . (2.25)

This representation of the roots γ̃i is discovered by pointing out that Eqs. (2.13) and (2.14)

suggest considering such roots as functions of σ̃ = σ. By taking derivatives of Eq. (2.13)
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with respect to σ up to the fourth order, one can then prove that all γ̃i are particular integrals

of the fourth-order ordinary differential equation [52]
[

σ3(σ − 1)
d4

dσ4
+ σ2(A1σ −B1)

d3

dσ3
+ σ(A2σ − B2)

d2

dσ2
+ (A3σ −B3)

d

dσ
+ C

]

Λ = 0,

(2.26)

where A1, A2, A3, B1, B2, B3, C are constants. The roots γ̃i undergo a peculiar variation

when β̃ describes an arbitrary curve in its plane. The critical points turn out to be

β̃1 = −iC, β̃2 = C, β̃3 = iC, β̃4 = −C, C ≡ 1024

3125
. (2.27)

The group of the linear differential equation (2.26) has in this case the property that the

root γ̃k is changed into γ̃5, for all k = 1, 2, 3, 4, when β̃ describes a small closed contour

about the critical point β̃k.

Eventually, the roots γi of Eq. (2.10) are given by

γi = χ(d1)γ̃i, ∀i = 1, 2, 3, 4, 5. (2.28)

At this stage, we have to invert the cubic transformation (A9) to find the five roots of the

original quintic equation (2.6). Since in this equation the number of sign differences between

consecutive nonvanishing coefficients is 1, we know from Descartes’ sign rule that it has only

one positive root. We find for its numerical value (from the definition (2.5) it is clear that

only positive values of γ are physically admissible)

γ+ = 4.208852239482695 · 10−44. (2.29)

This value is not affected by the planetoid mass m, since m is much smaller than α in (2.7).

As far as the unphysical roots2 are concerned, two of them are real and negative, i.e.

γ− = −4.20 · 1032 or − 6.07 · 10−34, (2.30)

and two of them are complex conjugate, i.e.

γC = −2.10 · 10−44 ± i3.36 · 10−44. (2.31)

Similarly, by repeating the whole analysis for

u =
1

s
≡ Γ

lP
, (2.32)

2 We do not need many decimal digits for unphysical roots.
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we find, by virtue of (2.3) and (2.4), only one positive root

Γ+ = 4.208852239579132 · 10−44, (2.33)

which is not affected by the planetoid mass m, since m is much smaller than β in (2.4),

whereas, among the unphysical roots, two are real and negative:

Γ− = −5.17 · 1030 or − 4.93 · 10−32, (2.34)

while the remaining two are complex conjugate and read as

ΓC = −2.10... · 10−44 ± i3.36... · 10−44, (2.35)

where the ellipsis denotes that a very tiny difference occurs in the decimal digits with respect

to the result in (2.31), beginning at the eleventh decimal digit for the real part and at the

tenth decimal digit for the imaginary part.

At this stage, we can exploit Eqs. (1.13) and (1.14) to evaluate the coordinates of quantum

corrected Lagrange points of the Earth-Moon system, finding that

xQ = 1.8752814881103817 · 108 m, yQ = ±3.329001652107382 · 108m. (2.36)

The Newtonian values of such coordinates are instead

xC = 1.8752814880224872 · 108 m, yC = ±3.329001652147382 · 108m. (2.37)

Interestingly, our detailed analysis confirms therefore the orders of magnitude found in Refs.

[23, 24], because we obtain (cf. Eq. (1.15))

xQ − xC ≈ 8.7894 mm, |yQ| − |yC| ≈ −4 mm. (2.38)

More precisely, our refined analysis confirms to a large extent the theoretical value of xQ−xC ,

whereas the sign of |yQ| − |yC | gets reversed with respect to Eq. (1.15), and its magnitude

gets reduced by 20 per cent.

III. COLLINEAR LIBRATION POINTS

From the theoretical point of view it is equally important to work out how the La-

grangian points of unstable equilibrium, usually denoted by L1, L2, L3, get affected by the
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one-loop long-distance quantum corrections to the Newtonian potential. On the side of the

applications, their importance is further strengthened, since satellites (e.g., the Wilkinson

Microwave Anisotropy Probe) have been sent so far to the points L1, L2 and L3 of some

approximate three-body configurations in the solar system.

We beging by recalling from Ref. [23] that the gradient of the effective potential in the

restricted three-body problem has components

∂U

∂x
=

(α+ β)

l3
x− αx

r3

(

1 + 2
k1

r
+ 3

k2

r2

)

− βx

s3

(

1 + 2
k3

s
+ 3

k2

s2

)

+
αβl

(α+ β)

[

1

s3

(

1 + 2
k3

s
+ 3

k2

s2

)

− 1

r3

(

1 + 2
k1

r
+ 3

k2

r2

)]

, (3.1)

∂U

∂y
= y

[

(α + β)

l3
− α

r3

(

1 + 2
k1

r
+ 3

k2

r2

)

− β

s3

(

1 + 2
k3

s
+ 3

k2

s2

)]

. (3.2)

When the libration points are collinear, the coordinate y vanishes, which ensures the van-

ishing of ∂U
∂y

as well. On the other hand, from the geometry of the problem, as shown in Fig.

1, one has

y2 = r2 − x2 − 2ax− a2. (3.3)

The vanishing of y implies therefore that x obeys the algebraic equation

x2 + 2ax+ a2 − r2 = 0, (3.4)

which is solved by the two roots

x = εr − a = εr − βl

(α + β)
, ε = ±1. (3.5)

Furthermore, the geometry of the problem yields also

x =
(r2 − s2)

2l
+

1

2

(α− β)

(α + β)
l, (3.6)

which implies, by comparison with Eq. (3.5),

s2 = (r − εl)2 =⇒ s = ±(r − εl), (3.7)

where both signs should be considered, since (r − εl) may be negative. Note now that the

insertion of (3.5) into Eq. (3.1) yields

∂U

∂x
=
β

s3

(

1 + 2
k3

s
+ 3

k2

s2

)

(l− εr)− αε

r2

(

1 + 2
k1

r
+ 3

k2

r2

)

+
(α + β)

l3

(

εr − βl

(α+ β)

)

= 0.

(3.8)
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Moreover, we consider first the solution s = r − εl in Eq. (3.7). This turns Eq. (3.8) into

the form

β

(r − εl)2
+

2k3β

(r − εl)3
+

3k2β

(r − εl)4
+
α

r2
+

2k1α

r3
+

3k2α

r4
− (α + β)r

l3
+
βε

l2
= 0. (3.9)

This form of the equation to be solved for r = AP suggests multiplying both sides by

(r − εl)4r4, which makes it clear that we end up by studying a nonic algebraic equation.

Moreover, it is now convenient to adopt dimensionless units. For this purpose, we point out

that the length parameters k1 and k3 in the potential (1.11) are a linear combination of the

gravitational radii Lα, Lβ of primaries and Lm of planetoid according to the relations

Lα ≡ Gα

c2
, Lβ ≡ Gβ

c2
, Lm ≡ Gm

c2
, (3.10)

lα = Lα + Lm, lβ = Lβ + Lm, (3.11)

k1 = κ1lα, k3 = κ3lβ = κ1lβ, (3.12)

while k2 = κ2(lP )2 from Eq. (1.4). Furthermore, all lengths involved are a fraction of the

distance l among the primaries, and hence we set

ψ ≡ r

l
, ρ ≡ β

α
, ρα ≡ lα

l
, ρβ ≡ lβ

l
, ρP ≡ lP

l
. (3.13)

In light of (3.10)-(3.13), we find the following dimensionless form of the nonic resulting from

Eq. (3.9):
9
∑

n=0

Anψ
n = 0, (3.14)

where

A0 ≡= −3(1 + ρ)−1κ2(ρP )2, (3.15)

A1 ≡ −2(1 + ρ)−1
[

κ1ρα − 6εκ2(ρP )2
]

, (3.16)

A2 ≡ −(1 + ρ)−1
[

1 − 8εκ1ρα + 18κ2(ρP )2
]

, (3.17)

A3 ≡ 4(1 + ρ)−1
[

ε− 3κ1ρα + 3εκ2(ρP )2
]

, (3.18)

A4 ≡ −(1 + ρ)−1
[

(6 + (1 + ε)ρ) − 2κ1(4ρα + ρβρ)ε+ 3(1 + ρ)κ2(ρP )2
]

, (3.19)

A5 ≡ (1 + ρ)−1
[

(1 + 4ε) + (5 + 2ε)ρ− 2κ1(ρα + ρβρ)
]

, (3.20)

A6 ≡ −(1 + ρ)−1
[

(1 + 4ε) + (10ε+ 1)ρ
]

, (3.21)
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A7 ≡ 2(1 + ρ)−1(3 + 5ρ), (3.22)

A8 ≡ −(1 + ρ)−1(4 + 5ρ)ε, (3.23)

A9 ≡ 1. (3.24)

If we take instead the root s = −(r − εl) in Eq. (3.7) and insert it into Eq. (3.8), we find,

with analogous procedure, the nonic equation

9
∑

n=0

Bnψ
n = 0, (3.25)

where

Bk = Ak if k = 0, 1, 2, 3, 7, 8, 9, (3.26)

B4 ≡ (1 + ρ)−1
[

(−6 + (1 − ε)ρ) + 2κ1ε(4ρα + ρβρ) + 3(ρ− 1)κ2(ρP )2
]

, (3.27)

B5 ≡ (1 + ρ)−1
[

(1 + 4ε) + (5 − 2ε)ρ− 2κ1(ρα + ρβρ)
]

, (3.28)

B6 ≡ −(1 + ρ)−1
[

(1 + 4ε) + (10ε− 1)ρ]. (3.29)

In Newtonian theory, the collinear Lagrangian points L1, L2, L3 are ruled instead by a

quintic equation, as is clear by setting k1 = k2 = k3 = 0 in Eq. (3.8) and multiplying the

resulting equation by (r− εl)2r2. By virtue of the two choices of sign in Eq. (3.7) one gets,

if s = r − εl, the quintic

5
∑

n=0

Cnψ
n = ψ5 − (2 + 3ρ)

(1 + ρ)
εψ4 +

(1 + 3ρ)

(1 + ρ)
ψ3 − [1 + (1 + ε)ρ]

(1 + ρ)
ψ2

+
2ε

(1 + ρ)
ψ − 1

(1 + ρ)
= 0, (3.30)

while s = −(r − εl) leads to the quintic

5
∑

n=0

Dnψ
n = ψ5 − (2 + 3ρ)

(1 + ρ)
εψ4 +

(1 + 3ρ)

(1 + ρ)
ψ3 − [1 − (1 − ε)ρ]

(1 + ρ)
ψ2

+
2ε

(1 + ρ)
ψ − 1

(1 + ρ)
= 0. (3.31)

In this case, the coefficients are related by

Ck = Dk if k = 0, 1, 3, 4, 5, (3.32)

C2,− = −(1 + ρ)−1 = D2,+, (3.33)
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C2,+ = −(1 + ρ)−1(1 + 2ρ) 6= D2,− = −(1 + ρ)−1(1 − 2ρ). (3.34)

In light of Eqs. (3.30) and (3.31), we find the values of r (distance from the planetoid to

the primary) in Newtonian theory given by

r1 = 3.2637629578162163 · 108 m, (3.35)

r2 = 3.8167471682615924 · 108 m, (3.36)

r3 = 4.4892055063051933 · 108 m, (3.37)

while, for the corresponding roots of the nonic equations (3.14) and (3.25), we find

R1 = 3.263762957852764 · 108 m, (3.38)

R2 = 3.8167471683504695 · 108 m, (3.39)

R3 = 4.4892055063281494 · 108 m. (3.40)

By virtue of these values, we find

R1 − r1 = 3.6 mm, (3.41)

R2 − r2 = 9 mm, (3.42)

R3 − r3 = 2.3 mm. (3.43)

Interestingly, the order of magnitude of quantum corrections to the location of L1, L2, L3

in the Earth-Moon system coincides with the order of magnitude of quantum corrections

to L4, L5 that we have found in Eq. (2.38). This may not have any practical consequence,

since L1, L2, L3 are points of unstable equilibrium, but the detailed analysis performed in this

section adds evidence in favour of our evaluation of quantum corrections to all Lagrangian

points in the Earth-Moon system being able to predict effects of order half a centimeter.

The main perturbations of such a scheme may result from the Sun. If one then considers

a restricted four-body problem where the Earth and Moon move in circular orbits around

their center of mass, which in turn moves in a circular orbit about the Sun3, one finds that

L4 and L5 are no longer points of stable equilibrium [53]. However, one can evaluate the

impulse required to induce stability at L4, i.e. to force the planetoid to stay precisely at L4.

Such an impulse turns out to be 2360 lb/sec/slug/yr, as shown in Ref. [53].

3 The Sun’s effect on the planetoid is much larger than the Sun’s effect on the Moon.
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IV. TINY DEPARTURE FROM THE EQUILATERAL TRIANGLE PICTURE:

PROSPECTS TO MEASURE THE EFFECT WITH LASER RANGING

The quantum gravity effect described in our paper can be studied with the tech-

nique of Satellite/Lunar Laser Ranging (hereafter SLR/LLR) and a laser-ranged test mass

equipped with Cube Corner Retro-reflectors (CCRs), to be designed ad hoc for this pur-

pose. SLR/LLR is performed by the International Laser Ranging Service (ILRS) [54], which

recently celebrated the 50th anniversary of the first successful SLR measurement, which

occurred at the Goddard Geophysical and Astronomical Observatory (GGAO) on October

31, 19644. Detecting this tiny departure from classical gravity is a challenging task, which

requires precise positioning in space at the Lagrangian points L4 and L5, in absolute terms,

that is, with respect to an appropriately chosen coordinate reference system. One potential

choice is the International Terrestrial Reference system (ITRS) [55], which is established

with several geodesy techniques, including SLR/LLR. The latter provides almost uniquely

the metrological definition of the Earth’s center of mass (geocenter) and origin of the ITRS,

as well as, together with Very Long Baseline Interferometry (VLBI), the absolute scale of

length in space in Earth Orbit. Given its similarity with LLR [56], another option for the

coordinate frame is the Solar System Barycenter (SSB). In fact the distance of L4 and L5

from the ground laser stations of the ILRS is very close to their distance to the Laser retrore-

flector array (LRAs) of deployed by the Apollo and Lunokhod missions, which over the last

45 years were used for some among the best precision tests of General Relativity (see Refs.

[57–62]). The SSB is particularly apt for the purpose, since it is used for General Relativity

tests carried out with LLR data analysis by means of the orbit software package Planetary

Ephemeris Program (PEP) since the eighties [58] and until nowadays [59, 60]. PEP has been

developed by the Harvard-Smithsonian Center for Astrophysics (I. I. Shapiro et al, currently

maintained by J. F. Chandler). A review of LLR data taking and analysis can be found in

Ref. [60].

A laser ranging test mass (LRtm) can be designed with a dedicated effort, by exploiting

the experience of LLR data taking and analysis described above, and especially by taking

advantage of existing capabilities for detailed pre-launch characterization of any kind of

4 See http://ilrs.gsfc.nasa.gov for a description of satellite/lunar laser ranging. See also

http://ilrs.gsfc.nasa.gov/ilrw19/.
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LRAs and/or test mass for Solar System exploration [63–66]. Some of the Key Performance

Indicators (KPIs) that must be taken into account to design an appropriate LRtm for the

signature of new physics described in this paper are as follows.

(i) Adequate laser return signal (lidar optical cross section) from the Lagrangian points

L4, L5.

(ii) Acceptable rejection of the unavoidable nongravitational perturbations (NGPs) at L4, L5

which any chosen test mass and/or test spacecraft will experience, whose complexity scales

with the complexity of the structure of the test mass and/or test spacecraft itself.

(iii) Optimization/minimization of the value of the surface-to-mass ratio, S/M. This is a

critical KPI, since all NGPs related to the sun radiation pressure and thermal effect, are

proportional to S/M (see for example Ref. [67]). Compared to other test spacecrafts and/or

test masses an LRtm has the advantage of the simplicity of geometrical shape (for example,

spherical) and mechanical structure. To date, Apollo/Lunokhod are demonstrating a lifetime

of at least 45 years.

(iv) Time-durability of the test mass to prolonged measurements. Since LRtm are passive

and maintenance free, this KPI favors LRtm over other types of any active test masses

and/or spacecrafts.

The above KPIs can be characterized at the dedicated laboratory described by Refs.

[63, 64] (see also http://www.lnf.infn.it/esperimenti/etrusco/). From the experimental point

of view of laser ranging investigations, arguments reported in this section for L4 and L5 apply

identically to L3. They do not apply to L2 since such a position is not visible from ILRS

stations. The distance of L1 from Earth is shorter than for L3, L4 and L5, which would

make the laser return signal from an LRtm in L1 higher than from L3, L4, L5 (by a purely

geometric factor equal to the fourth power of the ratio of the distances of L3 and L1 from

any given ILRS station; see for example Ref. [63]. Given the relative proximity of L1 to the

Moon, gravitational effects on an LRtm in L1 related to the nonpointlike structure of the

Moon (felt in L1) should be evaluated to determine their influence, if any, on the conclusions

of the previous section. This influence is expected to be negligible for an LRtm in L3, L4 and

L5, since they are much more distant from the Moon than L1.
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V. DISPLACED PERIODIC ORBITS FOR A SOLAR SAIL IN THE EARTH-

MOON SYSTEM

Displaced periodic orbits describe the dynamics of the planetoid, e.g., a solar sail, in

the neighborhood of the libration points, which have been studied in detail in the quantum-

corrected case [23] and in Newtonian theory [29]. The appropriate tool of classical mechanics

are the variational equations, for which we refer the reader to Refs. [24, 26, 27]. In the

simplest possible terms, the components x, y, z of the position vector of the sail (see Fig. 2) at

each libration point change by the infinitesimal amount ξ, η, ζ respectively and, by retaining

only first-order terms in ξ, η, ζ in the equations of motion, one finds the following linear

variational equations of motion for the libration points L4, L5 describing stable equilibrium

[29]

ξ̈ − 2η̇ = U0
xxξ + U0

xyη + aξ, (5.1)

η̈ + 2ξ̇ = U0
xyξ + U0

yyη + aη, (5.2)

ζ̈ = U0
zzζ + aζ , (5.3)

where the auxiliary variables aξ, aη, aζ describe the solar sail acceleration, and

U0
xx, U

0
yy, U

0
zz, U

0
xy are the partial derivatives of the gravitational potential (1.7) evaluated

at L4 or L5. Note that, following Ref. [29], we are here using units where the sum of the

masses of the primaries is set to 1, as well as their distance and the Newton constant.

Following Ref. [29], assume now that a solution of the linearized equations of motion

(5.1)-(5.3) is periodic of the form

ξ(t) = Aξ cos(ω⋆t) +Bξ sin(ω⋆t), (5.4)

η(t) = Aη cos(ω⋆t) +Bη sin(ω⋆t), (5.5)

where Aξ, Aη, Bξ and Bη are parameters to be determined, and ω⋆ = 0.923 is the angular

rate of the Sun line in the corotating frame in a dimensionless synodic coordinate system

[29]. By substituting Eqs. (5.4)-(5.5) in the differential equations (5.1)-(5.3), we obtain the

following linear system in Aξ, Aη, Bξ and Bη [29]:

−(ω2
⋆ + U0

xx)Bξ + 2ω⋆Aη − U0
xyBη = 0, (5.6)

−U0
xyAξ + 2ω⋆Bξ − (ω2

⋆ + U0
yy)Aη = 0, (5.7)
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FIG. 2: Schematic geometry of the Earth-Moon restricted three-body problem when the planetoid

is a solar sail.

−(ω2
⋆ + U0

xx)Aξ − U0
xyAη − 2ω⋆Bη = a0 cos3 ϕ, (5.8)

−2ω⋆Aξ − U0
xyBξ − (ω2

⋆ + U0
yy)Bη = −a0 cos3 ϕ. (5.9)

This linear system can be solved to find the coefficients Aξ, Bξ, Aη, Bη, here arranged in

the four rows of a column vector P, while b is the column vector whose four rows are the

right-hand sides of (5.6), (5.7), (5.8) and (5.9), respectively. Let A be the 4 × 4 matrix

A =





A1 B1

C1 D1



 , (5.10)

where the 2 × 2 submatrices of A are [29]

A1 =





0 −ω2
⋆ − U0

xx

−U0
xy 2ω⋆



 , (5.11)

B1 =





2ω⋆ −U0
xy

−ω2
⋆ − U0

yy 0



 , (5.12)

C1 =





−ω2
⋆ − U0

xx 0

−2ω⋆ −U0
xy



 , (5.13)
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FIG. 3: Time evolution of ξ for L4 in the Newtonian case.

D1 =





−U0
xy −2ω⋆

0 −ω2
⋆ − U0

yy



 . (5.14)

With this matrix notation, the solution of our linear system (5.6)-(5.9) reads as [29]

P i = (A−1)i
j b

j ∀i = 1, 2, 3, 4. (5.15)

The coefficients Aξ, Aη, Bξ and Bη are amplitudes that characterize the displaced periodic

orbit.

Last, the out-of-plane motion (Eq. (4.3)) is decoupled from the in-plane motion, hence

the solution of Eq. (5.3) is given by [29]

ζ(t) = θ(t)a0 cos2 ϕ(sinϕ)|U0
zz|−1

+ cos(ωζt)
[

ζ(t = 0) − a0 cos2 ϕ(sinϕ)|U0
zz|−1

]

, (5.16)

where θ is a step function

θ(t) = 1 if t > 0, θ(t) = 0 if t < 0. (5.17)

Thus, the required sail acceleration for a fixed distance can be given by [29]

a0 =
ζ(t = 0)|U0

zz|
cos2 ϕ(sinϕ)

. (5.18)

In Newtonian theory, the findings for displaced periodic orbits are well summarized in

Figs. 3-5 (cf. Ref. [29]).

On considering the quantum corrections evaluated in detail in Sec. II, and setting fur-

thermore the angle ϕ = π
4
, while ζ(t = 0) = 2, ω⋆ = 0.923, a0 = 10−4, we arrive at the

plots displayed in Figs. 6-8. The starting value of ζ has been taken to be 100 km, increased

gradually to reach 2500 km.
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FIG. 4: Time evolution of η for L4 in the Newtonian case.

FIG. 5: Periodic orbits at linear order around the Lagrangian point L4 in Newtonian theory.

Our calculation is of interest because it shows that even our quantum corrected potential

allows for periodic solutions in the neighborhood of uniform circular motion. The precise

characterization of regions of stability and instability [70] of such displaced periodic orbits

is a fascinating problem for the years to come.

FIG. 6: Time evolution of ξ for L4 in the quantum-corrected model.
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FIG. 7: Time evolution of η for L4 in the quantum-corrected model.

FIG. 8: Periodic orbits at linear order around the Lagrangian point L4. We have used the quan-

tum corrected coordinates obtained at the end of Sec. II. The periodic orbit is elliptic as in the

Newtonian case displayed in Fig. 5.

VI. CONCLUDING REMARKS AND OPEN PROBLEMS

We find it appropriate to begin our concluding remarks by stressing two conceptual

aspects, which are as follows.

(i) In the course of an orbit of a celestial body around another celestial body, their mutual

separation may change by a nonnegligible amount. Thus, it would be misleading to look

for an observational test of one-loop long-distance quantum corrections to the Newtonian

potential by investigating the orbits, because we do not have a formula for V (r) which is

equally good at all points. By contrast, the evaluation of stable equilibrium points (to first

order in perturbations) provides a definite prediction, i.e., the coordinates of such a point,
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which can be hopefully measured with the techniques outlined in Sec. III. In other words,

coordinates of Lagrangian libration points L4 and L5 and displaced periodic orbits around

unperturbed circular motion provide a valuable test of effective field theories of quantum

gravity, whereas the orbits of celestial bodies are best studied within the framework of

relativistic celestial mechanics.

(ii) At the risk of repeating ourselves, the technique of Refs. [15–17, 22] provides corrections

to the Newtonian potential, and hence the unperturbed dynamics is the Newtonian celestial

mechanics of the Earth-Moon-satellite system, which may provide a good example of circular

restricted three-body problem. The quantum corrected potential becomes (1.2), where k1

appears, on dimensional ground, purely classical, but includes a numerical coefficient, κ1,

which depends on the value taken by the coefficient κ2 that multiplies l2P in k2:

κ1 = κ1(κ2), k2 = κ2l
2
P .

Thus, we do not compute corrections to relativistic celestial mechanics (cf. Ref. [68]), but,

on the other hand, we need the advanced tools of relativistic celestial mechanics to test the

tiny effect predicted in Eq. (2.38). We should mention at this stage the important work in

Ref. [69], where the authors obtain a triangular solution to the general relativistic three-

body problem for general masses, and find that the post-Newtonian configuration for three

finite masses is not always equilateral. When their technique is applied to the Earth-Moon

system, we find, unlike our Eq. (2.38), a correction to the x-coordinate of L4 of order 2.73

mm, and a correction to the y coordinate of L4 of order −0.53 mm. The former agrees

with our orders of magnitude, while the latter, being less than a millimeter, is very hardly

detectable.

Our original contribution is, first, the detailed calculation of the roots of the quintic

equation in Sec. II (which is an original application of techniques previously developed by

mathematicians), second, the derivation and solution of the nonic equation in Sec. III for

quantum corrections to collinear Lagrangian points and, third, the application of the roots

in Sec. II to the evaluation of displaced periodic orbits of solar sails in the Earth-Moon

system, when the one-loop long distance quantum corrections to the Newtonian potentials

are taken into account [22–24]. The use of dimensionless variables for the quintic equation

(2.6), and the exploitment of exact formulas for its roots were of crucial importance to

double-check the numerical predictions of Refs. [23, 24]. Interestingly, we have found that
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a refined analysis like ours confirms the orders of magnitude obtained in Ref. [24], whereas

the sign of |yQ| − |yC| gets reversed with respect to Ref. [24], and its expected theoretical

value turns out to be smaller by 20 per cent. Furthermore, displaced periodic orbits have

been evaluated in Sec. IV with the quantum corrected coordinates displayed in Eq. (2.36),

when the condition for the existence of displaced orbits is affected by terms resulting from

a solar sail model. We have found that, even when the quantum corrected potential (1.2)

is adopted, the displaced periodic orbits are of elliptical shape (see Fig. 8) as in the New-

tonian theory. The solar-sail model is an interesting possibility considered over the last few

dacades, but is not necessarily better than alternative models of planetoid. For example,

the large structure and optical nature of solar sails can create a considerable challenge. If

the structure and mass distribution of the sail is complicated, one has to resort to suitable

approximations. Furthermore, the characterization of regions of stability or instability [70]

of displaced periodic orbits of solar sails is a theoretical problem whose solution might have

far reaching consequences for designing space missions.

Last, but not least, the laser ranging techniques outlined in Sec. IV appear as a promising

tool for testing the predictions at the end of Sec. II. The years to come will hopefully tell

us whether a laser ranging test mass can be designed, upon consideration of the four key

performance indicators listed at the end of Sec. IV. At that stage, the task will remain to

actually send a satellite at L4 and keep it there despite the perturbations caused by the

Sun [53], which has never been accomplished to the best of our knowledge. The resulting

low-energy test of quantum gravity in the solar system would reward the considerable effort

necessary to achieve this.
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APPENDIX A: BRING-JERRARD FORM OF QUINTIC EQUATIONS

Let us start from the general quintic equation

X5 + a4X
4 + a3X

3 + a2X
2 + a1X + a0 = 0. (A1)

Denote the roots of Eq. (A1) by Xi, i = 1, ..., 5, and let

Sn = Sn(Xk) ≡
5
∑

k=1

(Xk)
n (A2)

be the sum of the nth powers of such roots. By virtue of the Newton power-sum formula, a

general representation of Sn is

Sn = −na5−n −
n−1
∑

j=1

Sn−ja5−j, (A3)

with the understanding that aj = 0 for j < 0. For the lowest values of n, Eq. (A3) yields

S1(Xk) = −a4, S2(Xk) = (a4)
2 − 2a3, S3(Xk) = −(a4)

3 + 3a3a4 − 3a2,

S4(Xk) = (a4)
4 − 4a3(a4)

2 + 4a2a4 + 2(a3)
2 − 4a1, (A4)

S5(Xk) = −(a4)
5 + 5

[

a3(a4)
3 − a2(a4)

2 − (a3)
2a4 + a1a4 − a0 + a2a3

]

. (A5)

A systematic way to proceed involves two steps, i.e., first a quadratic Tschirnhaus transfor-

mation [71]

Yk = (Xk)
2 + µXk + ν (A6)

between the roots Xk of Eq. (A1) and the roots Yk of the principal quintic

X5 + c2X
2 + c1X + c0 = 0, (A7)

supplemented [72] by the evaluation of S1(Yk), ..., S5(Yk) to obtain through radicals

µ, ν, c0, c1, c2, and eventually a quartic Tschirnhaus transformation [71]

Zk = (Yk)
4 + u1(Yk)

3 + u2(Yk)
2 + u3Yk + u4, (A8)

between the roots Yk of Eq. (A7) and the roots Zk of the Bring-Jerrard form (2.10) of the

quintic. This procedure is conceptually clear although rather lengthy (see Appendix B),

and the joint effect of inverting (A8) and then (A6) to find Xk = Xk(Yj(Zl)) leads to 20
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candidate roots [72], which is not very helpful if one is interested in the numerical values

of such roots, as indeed we are. One might instead stick to our Eq. (2.6) and then try

to exploit the Birkeland theorem [73], according to which the roots of any quintic can be

re-expressed through generalized hypergeometric functions like the ones defined in our Sec.

II. However, when there are three (or more) nonvanishing coefficients as in Eq. (2.6), the

Birkeland theorem leads to too many (for numerical purposes) hypergeometric functions in

the general expansion of roots. Furthermore, the set of linear partial differential equations

[74] obeyed by the roots when viewed as functions of all coefficients does not lead easily to

their explicit form.

At this stage, having appreciated the need for a trinomial, possibly Bring-Jerrard form

of the quintic, and rather than feeling in despair, we point out that, since in our original

quintic (2.6) two coefficients vanish, i.e. a2 = a1 = 0, it is more convenient to use what is

normally ruled out in the generic case [72], i.e., a cubic Tschirnhaus transformation between

the roots Xk of Eq. (A1) and the roots Yk of Eq. (2.10):

Yk = (Xk)
3 + λ1(Xk)

2 + λ2(Xk) + λ3. (A9)

By virtue of Eqs. (2.10) and (A2)-(A5), we find

S1(Yk) = S2(Yk) = S3(Yk) = 0, (A10)

S4(Yk) = −4d1, S5(Yk) = −5d0. (A11)

On assuming the cubic relation (A9), Eqs. (A10) become a nonlinear algebraic system

leading to the numerical evaluation of λ1, λ2, λ3. More precisely, from S1(Yk) = 0 we find

5λ3 + λ2S1(Xk) + λ1S2(Xk) + S3(Xk) = 0, (A12)

while from S2(Yk) = 0 we obtain

5(λ3)
2 + 2λ2λ3S1(Xk) + [(λ2)

2 + 2λ1λ3]S2(Xk) + 2(λ1λ2 + λ3)S3(Xk)

+ [(λ1)
2 + 2λ2]S4(Xk) + 2λ1S5(Xk) + S6(Xk) = 0. (A13)

Last, from the vanishing of S3(Yk) we get

5(λ3)
3 + 3λ2(λ3)

2S1(Xk) + 3(λ2)
2λ3S2(Xk) + (λ2)

3S3(Xk)

+ 3(λ1)
2λ3S4(Xk) + [3(λ1)

2λ2 + 6λ1λ3]S5(Xk) + [(λ1)
3 + 3λ3 + 6λ1λ2]S6(Xk)

+ 3[(λ1)
2 + λ2]S7(Xk) + 3λ1S8(Xk) + S9(Xk) = 0. (A14)

27



The system (A12)-(A14) cannot be solved by radicals because, if one expresses for example

λ1 as a linear function of λ2 and λ3 from Eq. (A12), and one solves the resulting quadratic

equation for λ2 = λ2(λ3) or λ3 = λ3(λ2) from Eq. (A13), one discovers that Eq. (A14) is

not a polynomial in λ3 (respectively, λ2). Nevertheless, for numerical purposes, the system

(A12)-(A14) can be solved and has been solved from us in the Earth-Moon system. Last,

from Eq. (A11) we find the coefficients d1 and d0 in the Bring-Jerrard form of the quintic,

according to the formulas

d1 = −1

4
S4(Yk) =

12
∑

i=0

b1iSi(Xk), (A15)

d0 = −1

5
S5(Yk) =

15
∑

i=0

b0iSi(Xk), (A16)

We have evaluated all b1i and b0i coefficients by applying patiently the Tschirnhaus trans-

formation (A9) and the definition (A2). We find therefore six triplets of possible values for

λ1, λ2, λ3 (see Tables I and II), which lead always to the same values of d1 and d0 (this is a

crucial consistency check), i.e.

d1(w) = 2.78 · 10−176 + i6.91 · 10−186, d1(u) = 2.78 · 10−176 − i8.51 · 10−188, (A17)

d0(w) = 1.66 · 10−220 − i5.17 · 10−230, d0(u) = −1.66 · 10−220 + i6.36 · 10−232, (A18)

where w and u are the variables defined in Eqs. (2.5) and (2.32), respectively. Eventually,

the roots Xk of our quintic (2.6) have been obtained by solving Eq. (A9) for Xk = Xk(Yk),

with the help of the solution algorithm for the cubic equation. This means that we first

re-express (A9) in the form

h(Xk) ≡ (Xk)
3 + κ2(Xk)

2 + κ1Xk + κ0 = 0, (A19)

where κ2 ≡ λ1, κ1 ≡ λ2, κ0 ≡ λ3 − Yk. We then define the new variable

Vk ≡ Xk +
κ2

3
= Xk +

λ1

3
, (A20)

in terms of which Eq. (A19) is mapped into its canonical form

(Vk)
3 + pVk + q = 0, p ≡ h′

(

−κ2

3

)

, q ≡ h
(

−κ2

3

)

. (A21)

As shown in Ref. [52], if the discriminant

δ ≡ −27

4

q2

p3
(A22)
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is such that |δ| < 1, or if δ = 1, the three roots of Eq. (A21) can be expressed through the

Gauss hypergeometric function in the form

(Vk)i =
√
−p
[

(−1)3iF

(

−1

6
,
1

6
,
1

2
; δ

)

+
1

3

√

δ

3
F

(

1

3
,
2

3
,
3

2
; δ

)

]

(i = 1, 2), (A23)

(Vk)3 = −2

3

√

−pδ
3
F

(

1

3
,
2

3
,
3

2
; δ

)

. (A24)

As is clear from (A20), (A23), (A24), our method yields eventually 15 candidate roots, and

by insertion into the original quintic (2.6) we have found the 5 effective roots at the end of

Sec. II.

TABLE I: The six triplets of values of λ3, λ2 and λ1 for the 1/r-equation (2.1).

nth triplet λ3 λ2 λ1

n=1 −4.98 × 1045 − 3.10 × 10−55 i 0.26 + 1.59 × 10−11 i 4.21 × 1032 + 3.78 × 10−44 i

n=2 −4.98 × 10−45 + 3.10 × 10−55 i 0.26 − 1.59 × 10−11 i 4.21 × 1032 − 3.78 × 10−44 i

n=3 2.49 × 10−45 + 4.32 × 10−45 i 0.26 + 2.57 × 10−11 i 4.21 × 1032 + 6.11 × 10−44 i

n=4 2.49 × 10−45 − 4.32 × 10−45 i 0.26 − 2.57 × 10−11 i 4.21 × 1032 − 6.11 × 10−44 i

n=5 2.49 × 10−45 + 4.32 × 10−45 i 0.26 + 9.82 × 10−12 i 4.21 × 1032 + 2.34 × 10−44 i

n=6 2.49 × 10−45 − 4.32 × 10−45 i 0.26 − 9.82 × 10−12 i 4.21 × 1032 − 2.34 × 10−44 i

TABLE II: The six triplets of values of λ3, λ2 and λ1 for the 1/s-equation (2.2).

nth triplet λ3 λ2 λ1

n=1 −4.98 × 10−45 − 3.82 × 10−57 i 0.26 + 1.96 × 10−13 i 5.17 × 1030 + 3.78 × 10−44 i

n=2 −4.98 × 10−45 + 3.82 × 10−57 i 0.26 − 1.96 × 10−13 i 5.17 × 1030 − 3.78 × 10−44 i

n=3 2.49 × 10−45 + 4.32 × 10−45 i 0.26 + 3.16 × 10−13 i 5.17 × 1030 + 6.11 × 10−44 i

n=4 2.49 × 10−45 − 4.32 × 10−45 i 0.26 − 3.16 × 10−13 i 5.17 × 1030 − 6.11 × 10−44 i

n=5 2.49 × 10−45 + 4.32 × 10−45 i 0.26 + 1.21 × 10−13 i 5.17 × 1030 + 2.34 × 10−44 i

n=6 2.49 × 10−45 − 4.32 × 10−45 i 0.26 − 1.21 × 10−13 i 5.17 × 1030 − 2.34 × 10−44 i

Yet another valuable solution algorithm is available, i.e. the method in Ref. [75] which

expresses the roots of the quintic (A1) through two infinite series, i.e., the Jacobi nome and

the theta series, for which fast convergence is obtained, but the need to evaluate the roots
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with a large number of decimal digits makes it problematic, as far as we can see, to deal

with such series. Further valuable work on the quintic can be found in Ref. [76].

APPENDIX B: ALTERNATIVE ROUTE TO THE QUINTIC

We here find it useful to give details about the main alternative to the procedure used in

Appendix A. For that purpose, as we said, one assumes that the roots Xk of Eq. (A1) are

related to the roots Yk of the principal quintic (A7) by the quadratic transformation (A6).

The power sums for the principal quintic form are indeed

S1(Yk) = S2(Yk) = 0, S3(Yk) = −3c2, S4(Yk) = −4c1, S5(Yk) = −5c0. (B1)

On the other hand, we can evaluate S1(Yk) and S2(Yk) by using the quadratic transformation

(A6) and exploiting the identities

S1(Yk) = S2(Xk) + µS1(Xk) + 5ν, (B2)

S2(Yk) = S4(Xk) + 2µS3(Xk) + (µ2 + 2ν)S2(Xk) + 2µνS1(Xk) + 5ν2, (B3)

obtaining therefore the following equations for µ and ν:

µa4 − 5ν + 2a3 − (a4)
2 = 0, (B4)

µ2a3 − 10ν2 + µ(3a2 − a3a4) + 2a1 − 2a2a4 + (a3)
2 = 0, (B5)

where, in the course of arriving at Eq. (B5), we have re-expressed repeatedly (a4)
2 from

Eq. (B4). This system is quadratic with respect to µ and ν, and hence leads to two sets of

coefficients. For the case studied in Eq. (2.6), they reduce to (here a3 = ρ3, a4 = ρ4)

µ± =
a4[13a3 − 4(a4)

2] ±
√

60(a3)3 − 15(a3a4)2

2[5a3 − 2(a4)2]
, (B6)

ν± =
µ±

5
a4 +

2

5
a3 −

1

5
(a4)

2. (B7)

There is complete freedom to choose either of these. After finding µ and ν in such a way,

one can use the Eqs. (B1) to obtain c0, c1, c2. One finds explicitly, in general,

c0 = −ν5 − µν4S1(Xk) − (2µ2ν3 + ν4)S2(Xk) −
(

2µ3ν2 + 4µν3
)

S3(Xk)

−
(

µ4ν + 6µ2ν2 + 2ν3
)

S4(Xk) −
(

µ5

5
+ 4µ3ν + 6µν2

)

S5(Xk)

− (µ4 + 6µ2ν + 2ν2)S6(Xk) − (2µ3 + 4µν)S7(Xk) − (2µ2 + ν)S8(Xk)

− µS9(Xk) −
1

5
S10(Xk), (B8)
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c1 = −5

4
ν4 − µν3S1(Xk) −

(

3

2
µ2ν2 + ν3

)

S2(Xk)

− (µ3ν + 3µν2)S3(Xk) −
(

µ2

4
+ 3µ2ν +

3

2
ν2

)

S4(Xk) − (µ3 + 3µν)S5(Xk)

−
(

3

2
µ2 + ν

)

S6(Xk) − µS7(Xk) −
1

4
S8(Xk), (B9)

c2 = −5

3
ν3 − µν2S1(Xk) − (µ2ν + ν2)S2(Xk) −

µ

3
(µ2 + 6ν)S3(Xk)

− (µ2 + ν)S4(Xk) − µS5(Xk) −
1

3
S6(Xk). (B10)

The removal from a general quintic of the three terms in X4, X3 and X2 brings it to the

Bring-Jerrard form (2.10), here re-written for convenience as

X5 + d1X + d0 = 0. (B11)

By virtue of the Newton formulas (A3), the power sums for the quintic (B11) are

S1(Zk) = S2(Zk) = S3(Zk) = 0, S4(Zk) = −4d1, S5(Zk) = −5d0. (B12)

Assuming now, following Bring [49], that the roots Zk of Eq. (B11) are related by the quartic

transformation (A8) to the roots Yk of the principal quintic (A7), we can substitute Eq. (A8)

into Eq. (B12). This leads to a system of five equations with six unknown variables. More

precisely, from the equation

S1(Zk) = 5u4 − 4c1 − 3u1c2 = 0, (B13)

one finds

u4 =
4

5
c1 +

3

5
c2u1. (B14)

The second equation [72]

S2(Zk) = −10u1u2c0 − 4(u2)
2c1 +

4

5
(c1)

2 + 8c0c2 +
46

5
u1c1c2

+

[

6

5
(u1)

2 + 6u2

]

(c2)
2 − 2u3(5c0 + 4u1c1 + 3u2c2) = 0, (B15)

obtained from the identities

S2(Zk) = S8(Yk) + 2u1S7(Yk) + [(u1)
2 + 2u2]S6(Yk) + 2(u1u2 + u3)S5(Yk)

+ [(u2)
2 + 2u4 + 2u1u3]S4(Yk) + 2(u2u3 + u1u4)S3(Yk) + 5(u4)

2, (B16)
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S6(Yk) = 3(c2)
2, S7(Yk) = 7c1c2, S8(Yk) = 8c0c2 + 4(c1)

2, (B17)

relates u2 and u3. The clever idea of the Bring-Jerrard method lies in choosing u2 in such a

way that the coefficient of u3 in Eq. (B15) vanishes. By inspection one finds immediately

u2 = −5

3

c0

c2
− 4

3

c1

c2
u1. (B18)

Thus, Eq. (B15) now depends only on u1 and is a quadratic, i.e. [72]

[

27(c2)
4 − 160(c1)

3 + 300c0c1c2

]

(u1)
2+
[

27c1(c2)
3 − 400c0(c1)

2 + 375(c0)
2c2

]

u1

+ 18(c1c2)
2 − 45c0(c2)

3 − 250(c0)
2c1 = 0. (B19)

Last, by setting the sum of the cubes of (A8) to zero by virtue of (B12), a cubic equation

for u3 is obtained, by virtue of the identity

S3(Zk) = 5(u4)
3 +

12
∑

l=2

blSl(Yk), (B20)

where (recall that we already know S1(Yk)...S8(Yk))

b2 = 3u2(u4)
2, (B21)

b3 = (u3)
3 + 3u1(u4)

2 + 6u2u3u4, (B22)

b4 = 3(u2)
2u4 + 3(u4)

2 + 3u2(u3)
2 + 6u1u3u4, (B23)

b5 = 3(u2)
2u3 + 3u1(u3)

2 + 6u4(u3 + u1u2), (B24)

b6 = (u2)
3 + 3(u1)

2u4 + 3(u3)
2 + 6u2(u4 + u1u3), (B25)

b7 = 3(u1)
2u3 + 3(u2)

2u1 + 6(u1u4 + u2u3), (B26)

b8 = 3u4 + 3(u1)
2u2 + 3(u2)

2 + 6u1u3, (B27)

b9 = (u1)
3 + 3u3 + 6u1u2, (B28)

b10 = 3u2 + 3(u1)
2, (B29)

b11 = 3u1, (B30)

b12 = 1, (B31)

S9(Yk) = 9c0c1 − 3(c2)
3, (B32)

S10(Yk) = 5(c0)
2 − 10c1(c2)

2, (B33)
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S11(Yk) = −11c0(c2)
2 − 11(c1)

2c2, (B34)

S12(Yk) = −24c0c1c2 − 4(c1)
3 + 3(c2)

4. (B35)

All intermediate quantities for reduction to the Bring-Jerrard form can be therefore found

in terms of radicals. Of course, once the irreducible quintic (B11) is solved in terms of hy-

pergeometric functions as outlined in Sec. II, one has to invert the Tschirnaus-Bring quartic

transformation (A8) to obtain the solutions of the principal quintic (A7) and, eventually, of

the original quintic (A1), i.e.,

Xk = Xk(Yj(Zl)). (B36)

Thus, one obtains in general twenty candidates for five solutions, and only numerical testing

can tell which ones are correct [72].
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