401 research outputs found

    Bioprospecting antimicrobials from lactiplantibacillus plantarum: Key factors underlying its probiotic action

    Get PDF
    Lactiplantibacillus plantarum (L. plantarum) is a well‐studied and versatile species of lactobacilli. It is found in several niches, including human mucosal surfaces, and it is largely employed in the food industry and boasts a millenary tradition of safe use, sharing a long‐lasting relationship with humans. L. plantarum is generally recognised as safe and exhibits a strong probiotic character, so that several strains are commercialised as health‐promoting supplements and functional food products. For these reasons, L. plantarum represents a valuable model to gain insight into the nature and mechanisms of antimicrobials as key factors underlying the probiotic action of health‐promoting microbes. Probiotic antimicrobials can inhibit the growth of pathogens in the gut ensuring the intestinal homeostasis and contributing to the host health. Furthermore, they may be attractive alternatives to conventional antibiotics, holding potential in several biomedical applications. The aim of this review is to investigate the most relevant papers published in the last ten years, bioprospecting the antimicrobial activity of characterised probiotic L. plantarum strains. Specifically, it focuses on the different chemical nature, the action spectra and the mechanisms underlying the bioactivity of their antibacterial and antiviral agents. Emerging trends in postbiotics, some in vivo applications of L. plantarum antimicrobials, including strengths and limitations of their therapeutic potential, are addressed and discussed

    Is the pain just physical? The role of psychological distress, quality of life, and autistic traits in ehlers–danlos syndrome, an internet-based survey in italy

    Get PDF
    Background: Ehlers–Danlos syndromes (EDS) have been associated with psychological distress, comorbid psychiatric disorders, and worsening in quality of life (QoL). Among the neurodevelopmental disorders, autism spectrum disorders (ASD) have shown the highest rates of co-occurrence with EDS. The reasons for these associations are unknown and a possible role of pain in increasing the risk of psychiatric disorders in EDS has been suggested. However, a detailed picture of an Italian EDS sample is still lacking. Methods: We conducted a web-based survey in a third level center for the diagnosis of EDS in northern Italy, to investigate psychological distress, QoL, and the presence of autistic traits. Furthermore, we correlated the psychometric data with some clinical variables. Results: We observed a high rate of psychological distress with 91% of the responders at high risk of common mental disorders, low QoL, and high prevalence of autistic traits in EDS patients. Specifically, patients lacking a specific genetic test, diagnosed as suspects of EDS appeared to be at greater risk and reported worse psychological QoL. Pain was significantly associated with both psychological distress and worse QoL. Conclusions: Our findings support the need of further research and of a multi-disciplinary approach to EDS including psychological and psychiatric liaison

    A response surface methodology approach to improve nitrogen use efficiency in maize by an optimal mycorrhiza-to-Bacillus co-inoculation rate

    Get PDF
    Co-inoculation of arbuscular mycorrhizal fungi (AMF) and bacteria can synergically and potentially increase nitrogen use efficiency (NUE) in plants, thus, reducing nitrogen (N) fertilizers use and their environmental impact. However, limited research is available on AMF-bacteria interaction, and the definition of synergisms or antagonistic effects is unexplored. In this study, we adopted a response surface methodology (RSM) to assess the optimal combination of AMF (Rhizoglomus irregulare and Funneliformis mosseae) and Bacillus megaterium (a PGPR—plant growth promoting rhizobacteria) formulations to maximize agronomical and chemical parameters linked to N utilization in maize (Zea mays L.). The fitted mathematical models, and also 3D response surface and contour plots, allowed us to determine the optimal AMF and bacterial doses, which are approximately accorded to 2.1 kg ha–1 of both formulations. These levels provided the maximum values of SPAD, aspartate, and glutamate. On the contrary, agronomic parameters were not affected, except for the nitrogen harvest index (NHI), which was slightly affected (p-value of < 0.10) and indicated a higher N accumulation in grain following inoculation with 4.1 and 0.1 kg ha–1 of AMF and B. megaterium, respectively. Nonetheless, the identification of the saddle points for asparagine and the tendency to differently allocate N when AMF or PGPR were used alone, pointed out the complexity of microorganism interaction and suggests the need for further investigations aimed at unraveling the mechanisms underlying this symbiosis

    Recurrent NF1 gene variants and their genotype/phenotype correlations in patients with Neurofibromatosis type I

    Get PDF
    Neurofibromatosis type I, a genetic condition due to pathogenic variants in the NF1 gene, is burdened by a high rate of complications, including neoplasms, which increase morbidity and mortality for the disease. We retrospectively re-evaluated the NF1 gene variants found in the period 2000\u20132019 and we studied for genotype/phenotype correlations of disease complications and neoplasms 34 variants, which were shared by at least two unrelated families (range 2\u201311) for a total 141 of probands and 21 relatives affected by Neurofibromatosis type I. Recurrent variants could be ascribed to the most common mutational mechanisms (C to T transition, microsatellite slippage, non-homologous recombination). In genotype/phenotype correlations, the variants p.Arg440*, p.Tyr489Cys, and p.Arg1947*, together with the gross gene deletions, displayed the highest rates of complications. When considering neoplasms, carriers of variants falling in the extradomain region at the 5\u2032 end of NF1 had a lower age-related cancer frequency than the rest of the gene sequence, showing a borderline significance (p = 0.045), which was not conserved after correction with covariates. We conclude that (1) hotspots in NF1 occur via different mutational mechanisms, (2) several variants are associated with high rates of complications and cancers, and (3) there is an initial evidence toward a lower cancer risk for carriers of variants in the 5\u2032 end of the NF1 gene although not significant at the multivariate analysis

    Oral dysbiosis in pancreatic cancer and liver cirrhosis: A review of the literature

    Get PDF
    The human body is naturally colonized by a huge number of different commensal microbial species, in a relatively stable equilibrium. When this microbial community undergoes dysbiosis at any part of the body, it interacts with the innate immune system and results in a poor health status, locally or systemically. Research studies show that bacteria are capable of significantly influencing specific cells of the immune system, resulting in many diseases, including a neoplastic response. Amongst the multiple different types of diseases, pancreatic cancer and liver cirrhosis were significantly considered in this paper, as they are major fatal diseases. Recently, these two diseases were shown to be associated with increased or decreased numbers of certain oral bacterial species. These findings open the way for a broader perception and more specific investigative studies, to better understand the possible future treatment and prevention. This review aims to describe the correlation between oral dysbiosis and both pancreatic cancer and liver cirrhotic diseases, as well as demonstrating the possible diagnostic and treatment modalities, relying on the oral microbiota, itself, as prospective, simple, applicable non-invasive approaches to patients, by focusing on the state of the art. PubMed was electronically searched, using the following key words: "oral microbiota" and "pancreatic cancer" (PC), "liver cirrhosis", "systemic involvement", and "inflammatory mediators". Oral dysbiosis is a common problem related to poor oral or systemic health conditions. Oral pathogens can disseminate to distant body organs via the local, oral blood circulation, or pass through the gastrointestinal tract and enter into the systemic circulation. Once oral pathogens reach an organ, they modify the immune response and stimulate the release of the inflammatory mediators, this results in a disease. Recent studies have reported a correlation between oral dysbiosis and the increased risk of pancreatic and liver diseases and provided evidence of the presence of oral pathogens in diseased organs. The profound impact that microbial communities have on human health, provides a wide domain towards precisely investigating and clearly understanding the mechanism of many diseases, including cancer. Oral microbiota is an essential contributor to health status and imbalance in this community was correlated to oral and systemic diseases. The presence of elevated numbers of certain oral bacteria, particularly P. gingivalis, as well as elevated levels of blood serum antibodies, against this bacterial species, was associated with a higher risk of pancreatic cancer and liver cirrhosis incidence. Attempts are increasingly directed towards investigating the composition of oral microbiome as a simple diagnostic approach in multiple diseases, including pancreatic and liver pathosis. Moreover, treatment efforts are concerned in the recruitment of microbiota, for remedial purposes of the aforementioned and other different diseases. Further investigation is required to confirm and clarify the role of oral microbiota in enhancing pancreatic and liver diseases. Improving the treatment modalities requires an exertion of more effort, especially, concerning the microbiome engineering and oral microbiota transplantation

    Functional implications of bound phenolic compounds and phenolics–food interaction: A review

    Get PDF
    Sizeable scientific evidence indicates the health benefits related to phenolic compounds and dietary fiber. Various phenolic compounds-rich foods or ingredients are also rich in dietary fiber, and these two health components may interrelate via noncovalent (reversible) and covalent (mostly irreversible) interactions. Notwithstanding, these interactions are responsible for the carrier effect ascribed to fiber toward the digestive system and can modulate the bioaccessibility of phenolics, thus shaping health-promoting effects in vivo. On this basis, the present review focuses on the nature, occurrence, and implications of the interactions between phenolics and food components. Covalent and noncovalent interactions are presented, their occurrence discussed, and the effect of food processing introduced. Once reaching the large intestine, fiber-bound phenolics undergo an intense transformation by the microbial community therein, encompassing reactions such as deglycosylation, dehydroxylation, α- and ÎČ-oxidation, dehydrogenation, demethylation, decarboxylation, C-ring fission, and cleavage to lower molecular weight phenolics. Comparatively less information is still available on the consequences on gut microbiota. So far, the very most of the information on the ability of bound phenolics to modulate gut microbiota relates to in vitro models and single strains in culture medium. Despite offering promising information, such models provide limited information about the effect on gut microbes, and future research is deemed in this field
    • 

    corecore