47 research outputs found
Invasive Populations of the Emerald Ash Borer Agrilus planipennis Fairmaire, 1888 (Coleoptera: Buprestidae) in Saint Petersburg, Russia: A Hitchhiker?
Simple Summary The emerald ash borer (EAB) is an invasive beetle of Asian origin that has killed millions of ash trees in North America and Russia, with a devastating economic and ecological impact. In September 2020, EAB was detected for the first time in Saint Petersburg, Russia, notably killing ash trees. The invasion came from the eastern direction (Moscow) and became a significantly notable event for Saint Petersburg, famous for its historical parks. Moreover, Saint Petersburg is 120-130 km from the eastern EU borders of Estonia and Finland, with railway, motorway, and ferry connections. Currently, EAB is one of the most serious quarantine insect pests in the EU. There is a risk that the eventual EAB invasion could potentially extirpate European populations of ash. Currently, 95% are devastated by the invasive fungal disease ash dieback. Here, we investigated the development of EAB populations in Saint Petersburg, from its initial invasion (estimated year 2015), until 2021. We found that climatic conditions of north Russia do not favor the natural aerial spread of EAB. The two isolated populations were located, respectively, close to a motorway, and the Neva River (used for cargo shipping), implying that the insect spreads by transport vehicles, or "hitchhiking". This could potentially lead to the eventual invasion of the EU by this serious, tree-killing beetle. The emerald ash borer (EAB), Agrilus planipennis, is an invasive beetle of East Asian origin that has killed millions of ash trees (Fraxinus spp.) in North America and Russia. In September 2020, EAB was detected in Saint Petersburg, a notable event for the metropolitan city. The aim of the present study was to investigate the occurrence and ecology of EAB in Saint Petersburg. The presence of two distinct enclave populations of EAB was revealed, each of which has, most likely, been established through separate events of "hitchhiking" via transport vehicles. Following the invasion, the further spread of EAB in Saint Petersburg was slow and locally restricted, most likely due to climatic factors. This spread by "hitchhiking" suggests that the possibility of the further long-distance geographic spread of EAB in the Baltic Sea region (the EU) is high, both by ground transport (120-130 km distance from EU borders) and ferries that transport cars across the Baltic Sea. In certain cases, the development of EAB on Fraxinus excelsior, based on the stem portion colonized, larval densities, number of galleries, exit holes, viable larvae, and emerged adult beetles, was more successful than in Fraxinus pennsylvanica trees. The observed relatively high sensitivity of F. excelsior to EAB, therefore, casts doubt on the efficacy and benefits of the currently ongoing selection and breeding projects against ash dieback (ADB) disease, which is caused by the fungus Hymenoscyphus fraxineus. Inventory, mapping, and monitoring of surviving F. excelsior trees infested by both ADB and EAB are necessary to acquire genetic resources for work on the strategic long-term restoration of F. excelsior, tackling the probable invasion of EAB to the EU
North-Westward Expansion of the Invasive Range of Emerald Ash Borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) towards the EU: From Moscow to Saint Petersburg
Agrilus planipennis is a devastating invasive pest of ash trees in European Russia, Ukraine, and North America. To monitor the north-western limit of its European invasive range, in June 2018 we established 10 study plots along the federal highway M10 (Russia) that runs between Moscow and Saint Petersburg through Tver' City (approx. 180 km from Moscow), and lined with ash trees. On each plot, 2-4 Fraxinus pennsylvanica trees with heights ranging 6.1-17.0 m and diameters ranging 7.0-18.0 cm were girdled, i.e., 50 cm of their bark were removed. The study plots were visited and girdled trees were examined in September and November, 2018, and in October, 2019. Observations revealed that the current continuous north-western limit of A. planipennis range in European Russia coincides with the north-western border of Tver' City and this range limit has not distinctly shifted north-westward during 2015-2019. In spite of the rich food supply (due to abundant F. pennsylvanica and F. excelsior plantings) in Tver' City and along roads going to and from, the population density of A. planipennis in the area is currently low. Recent (September 2020) sudden detection of a spatially isolated A. planipennis outbreak approx. 520 km far north-westward from Tver' (in Saint Petersburg) suggested that A. planipennis most likely had arrived at Saint Petersburg not by gradual stepwise (flying tree-to-tree) expansion of its continuous invasive range in Tver' City, but as a result of its accidental introduction by means of, e.g., "insect-hitchhiked" vehicles, transported plants for planting, and/or other commodities. The proximity of the reported A. planipennis outbreak to the borders of the EU (approx. 130 km to Estonia and Finland) requires urgent measures for its containment and control, and constant monitoring
Expert range maps of global mammal distributions harmonised to three taxonomic authorities
AimComprehensive, global information on species' occurrences is an essential biodiversity variable and central to a range of applications in ecology, evolution, biogeography and conservation. Expert range maps often represent a species' only available distributional information and play an increasing role in conservation assessments and macroecology. We provide global range maps for the native ranges of all extant mammal species harmonised to the taxonomy of the Mammal Diversity Database (MDD) mobilised from two sources, the Handbook of the Mammals of the World (HMW) and the Illustrated Checklist of the Mammals of the World (CMW).LocationGlobal.TaxonAll extant mammal species.MethodsRange maps were digitally interpreted, georeferenced, error-checked and subsequently taxonomically aligned between the HMW (6253 species), the CMW (6431 species) and the MDD taxonomies (6362 species).ResultsRange maps can be evaluated and visualised in an online map browser at Map of Life (mol.org) and accessed for individual or batch download for non-commercial use.Main conclusionExpert maps of species' global distributions are limited in their spatial detail and temporal specificity, but form a useful basis for broad-scale characterizations and model-based integration with other data. We provide georeferenced range maps for the native ranges of all extant mammal species as shapefiles, with species-level metadata and source information packaged together in geodatabase format. Across the three taxonomic sources our maps entail, there are 1784 taxonomic name differences compared to the maps currently available on the IUCN Red List website. The expert maps provided here are harmonised to the MDD taxonomic authority and linked to a community of online tools that will enable transparent future updates and version control
Exploring multiple dimensions of standards in the development of human language technology infrastructure
EURAS Proceedings 2012Taikomosios informatikos katedraVytauto Didžiojo universiteta
Miško medžių genetinių objektų mokomojo tinklo projektas : projektas Nr. ESF/2004/2.5.0-K02-VS-05/SUT-159 "Aukščiausios studijų pakopos - magistrantų ir doktorantų - rengimas žemės ir miškų ūkio augalų biotechnologijų srityje" : veikla LMI-5
Bibliogr. sk. galeVytauto Didžiojo universitetasŽemės ūkio akademij
Regional variations in diffuse nitrogen losses from agriculture in the Nordic and Baltic regions
This paper describes nitrogen losses from, and the characteristics of. 35 selected catchments (112 to 2000 ha) in the Nordic and Baltic countries. Average annual losses of N in 1994-1997 ranged from 5 to 75 kg ha(-1). Generally, the lowest losses were observed in the Baltic countries and the highest in Norway. The N losses were also characterised by significant within-country and interannual variations, particularly in the Norwegian catchments. An important finding of the study is that the average nutrient losses varied greatly among the catchments studied. The main explanations for this variability were water runoff, fertiliser use (especially the amount of manure), soil type and erosion (including stream bank erosion). However, there were several exceptions, and it was difficult to find general relationships between the individual factors. For example, there was poor correlation between nitrogen losses and surpluses. Therefore, the results suggest that the observed variability in N losses cannot have been due solely to differences in farm management practices, although the studied catchments do include a wide range of nutrient application levels, animal densities and other relevant elements. There is considerable spatial variation in the physical properties (soil. climate, hydrology, and topography) and the agricultural management of the basins, and the interaction between and relative effects of these factors has an important impact on erosion and nutrient losses. In particular, hydrological processes may have a marked effect on N losses measured in the catchment stream water. The results indicate that significant differences in hydrological pathways (e.g. the relationship between fast- and slow-flow processes) lead to major regional differences in N inputs to surface waters and therefore also in the response to changes in field management practices. Agricultural practices such as crop rotation systems, nutrient inputs and soil conservation measuresVytauto Didžiojo universitetasŽemės ūkio akademij
Invasive Insect Pests of Forests and Urban Trees in Russia: Origin, Pathways, Damage, and Management
Invasive alien insects cause serious ecological and economical losses around the world. Here, we review the bionomics, modern ranges (and their dynamics), distribution pathways, monitoring, and control measures of 14 insect species known to be important invasive and emerging tree pests in forest and urban ecosystems of Russia: Leptoglossus occidentalis (Hemiptera: Heteroptera: Coreidae), Halyomorpha halys (Hemiptera: Heteroptera: Pentatomidae), Corythucha arcuata (Hemiptera: Heteroptera: Tingidae), Agrilus fleischeri, A. mali, A. planipennis, Lamprodila (Palmar) festiva (Coleoptera: Buprestidae), Ips amitinus, Polygraphus proximus (Coleoptera: Curculionidae: Scolytinae), Cydalima perspectalis (Lepidoptera: Crambidae), Acrocercops brongniardella, Cameraria ohridella, Phyllonorycter issikii, and P. populifoliella (Lepidoptera: Gracillariidae). We identified three major scenarios of tree pest invasions in the country and beyond: (1) a naturally conditioned range expansion, which results in the arrival of a pest to a new territory and its further naturalization in a recipient region; (2) a human-mediated, long-distance transfer of a pest to a new territory and its further naturalization; and (3) a widening of the pest's trophic niche and shift to new host plant(s) (commonly human-introduced) within the native pest's range frequently followed by invasion to new regions
A REVIEW OF THE POSSIBLE APPLICATIONS OF NANOTECHNOLOGY IN REFRACTORY CONCRETE
This article reviews the manufacturing nanotechnologies of modern refractory concretes and some other cementitious materials. The main part of the article focuses on the results obtained by the authors who analyzed the application of nanotechnology for manufacturing refractory concretes and examined the influence of nanostructure formation in the binding material on the properties of refractory concretes. In one case, investigations were carried out using two‐component (sodium silicate solution mixed with dicalcium silicate) and three‐component (sodium silicate solution mixed with dicalcium silicate plus calcium aluminate cement) binding materials, whereas in other case, multi‐component material, middle cement refractory concrete with mullite aggregates, microsilica and additives of single and hybrid deflocculant (polycarboxylate ether Castament FS20 and sodium tripolyphosphate) were researched. Preliminary investigations showed that the three‐component binding material under development hardens unlike the two‐component material as one of the binding components (combination of sodium silicate solution and dicalcium silicate) hardens very fast and affects the hydration process of the other component, calcium aluminate cement, which has a powerful impact on the whole structure of the already hardened material. The limited amount of water in the hardening structure provides conditions for the formation of the initial nanoclusters and nanolayers of amorphous hydrates. The application of nanotechnology in manufacturing refractory concretes has enabled to increase compressive strength 3 times – from 55 MPa to 165 MPa.
Santrauka
Straipsnyje apžvelgiamos per pastaraji dešimtmeti sukurtos ugniai atspariu betonu ir kai kuriu kitu cementiniu medžiagu gamybos nanotechnologijos, kurios padeda nagrineti nanostruktūru, susidariusiu kietejant šiu betonu rišamajai medžiagai, itaka fizikinems betonu charakteristikoms.
Detaliau apžvelgiami rezultatai, gauti šio straipsnio autoriu, nagrinejusiu nanotechnologiju taikyma ugniai atspariu betonu gamyboje tiriant nanostruktūru susidarymo, kietejant ugniai atspariu betonu rišamajai medžiagai bei ugniai atspariems betonams su mulito užpildu, itaka šiu medžiagu savybems. Autoriu tyrimai atlikti naudojant dvinkomponente (natrio silikato tirpalo ir dikalcio silikato) bei trikomponente (natrio silikato tirpalo, dikalcio silikato ir aliuminatinio cemento) rišamaja medžiaga bei vidutinio cemento kiekio ugniai atsparu betona su SiO2 mikrodulkiu ir hibridinio deflokulianto (natrio tripolifosfatu ir polikarboksilato eteriu) priedu. Preliminarūs tyrimai parode, kad trikomponentis rišiklis kieteja kitaip nei dvikomponentis, nes viena iš rišamuju daliu (natrio silikato tirpalo ir dikalcio silikato kompozicija) kieteja labai greitai ir veikia kito komponento (aliuminatinio cemento) hidratacijos eiga, o tai turi didele itaka visai kietejančiai struktūrai. Ribotas vandens kiekis kietejančioje struktūroje padeda šalia amorfiniu hidratu formuotis nanoklasteriams ir nanosluoksniams. Pritaikius nanotechnologija ugniai atspariu betonu gamyboje, pavyko gerokai padidinti ju termini atsparuma (beveik tris kartus) ir gniuždomaji stipri (nuo 55 MPa iki 165 MPa).
First Published Online: 10 Feb 2011
Reikšminiai žodžiai: nanotechnologija, ugniai atsparus betonas, aliuminatinis cementas, SiO2 mikrodulkes, natrio silikato tirpalas, deflokulianta