3,743 research outputs found

    NIH COBRE-Natural Products Neuroscience Chemistry Services Under Chemistry and DM-PK CORE Facility

    Get PDF
    Department/Unit poster (BioMolecular Sciences). Corresponding author: Rama S. Gadepalli ([email protected])https://egrove.olemiss.edu/pharm_annual_posters_2022/1008/thumbnail.jp

    Mesoporous silica networks with improved diffusion and interference-rejecting properties for electroanalytical sensing

    Get PDF
    Mesoporous silica materials characterized by well-ordered microstructure and size- and shape-controlled pores have attracted much attention in the last years. These systems can be used for the development of functional thin films for advanced applications in catalysis and electrocatalysis, sensors and actuators, separation techniques, micro- and nano-electronic engineering [1-2]. In this work, \u201cinsulating\u201d and mesoporous silica films were prepared by spin coating a home-made silica sol on a cleaned ITO glass support. The mesoporosity was controlled by the use of Polystyrene (PS) latex beads with different dimensions (30-60-100 nm) as template. The number of successive multi-layer depositions was varied (1-2-3-5 layers) and after the template removal, stable, homogeneous and reproducible transparent films were obtained, characterized by an interconnected porous structure. The morphological features and the physicochemical and optical properties of the films and/or sol-precursors were studied by DLS, FE-SEM, AFM, UV-vis transmittance spectroscopy and wettability analyses. Moreover, a deep electrochemical characterization was also performed by Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). In particular, the use of two redox mediator probes [(K4Fe(CN)6) and (Ru(NH3)6Cl3)], presenting opposite charge and different diffusional behaviour, allowed the comprehension of the mass transport and charge transfer phenomena, evidencing the effects of spatial confinement and charge selection. In the case of \u201cinsulating\u201d films prepared without the use of PS latexes, we proved an experimental evidence for theoretical models [3] concerning electroinactive layer-modified electrodes, with a scan-rate-dependent variation of the CV shape due to a progressive increase in the diffusion coefficient inside the insulating layer. A complex balance between diverging effects (higher hydrophilicity and insulating behavior effects of silica) when increasing the numbers of layers was also observed [4]. In the case of mesoporous layers, a better electrochemical response of smaller pores and of thicker layers was found, due to two main cooperative phenomena: i) a diffusion modification from fully planar to radial-convergent at the pore-silica interface due to surface porosity; ii) the presence of pores in a hydrophilic matrix which leads to a capillary pull effects, stronger in the case of smaller hydrophilic pores. The easiness of preparation and the interesting properties of these devices pave the way towards their use in many fields, particularly trace electroanalysis in real matrices. In fact, for example, the porous and properly charged network is able to exclude interfering macromolecules (mucin in our case), preventing electrode biofouling and enhancing the performances of the sensor towards dopamine detection. References [1] M. Ogawa, Chem. Rec. 17 (2017) 217-232. [2] A. Walcarius, Chem. Soc. Rev. 42 (2013) 4098-4140. [3] D. Menshykau, R.G. Compton, Langmuir 25 (2009) 2519\u20132529. [4] V. Pifferi, L. Rimoldi, D. Meroni, F. Segrado, G. Soliveri, S. Ardizzone, L. Falciola, Electrochem. Commun. 81 (2017) 102-105

    Fast shower simulation in the ATLAS calorimeter

    Get PDF
    The time to simulate pp collisions in the ATLAS detector is largely dominated by the showering of electromagnetic particles in the heavy parts of the detector, especially the electromagnetic barrel and endcap calorimeters. Two procedures have been developed to accelerate the processing time of electromagnetic particles in these regions: (1) a fast shower parameterisation and (2) a frozen shower library. Both work by generating the response of the calorimeter to electrons and positrons with Geant 4, and then reintroduce the response into the simulation at runtime. In the fast shower parameterisation technique, a parameterisation is tuned to single electrons and used later by simulation. In the frozen shower technique, actual showers from low-energy particles are used in the simulation. Full Geant 4 simulation is used to develop showers down to ~1 GeV, at which point the shower is terminated by substituting a frozen shower. Judicious use of both techniques over the entire electromagnetic portion of the ATLAS calorimeter produces an important improvement of CPU time. We discuss the algorithms and their performance in this paper

    The ATLAS Simulation: an LHC Challenge

    Get PDF
    The simulation program for the ATLAS experiment at CERN is currently in a full operational mode and integrated into the ATLAS common analysis framework, Athena. The OO approach, based on GEANT4, and in use during the DC2 data challenge has been interfaced within Athena and to GEANT4 using the LCG dictionaries and Python scripting. The robustness of the application was proved during the DC2 data challenge. The Python interface has added the flexibility, modularity and interactivity that the simulation tool requires in order to be able to provide a common implementation of different full ATLAS simulation setups, test beams and cosmic ray applications. Generation, simulation and digitization steps were exercised for performance and robustness tests. The comparison with real data has been possible in the context of the ATLAS Combined Test Beam (2004) and ongoing cosmic ray studies

    The replacement of fish meal with poultry by-product meal and insect exuviae: effects on growth performance, gut health and microbiota of the European seabass, Dicentrarchus labrax.

    Get PDF
    This study addressed the urgent need for sustainable protein sources in aquaculture due to the depletion of marine resources and rising costs. Animal protein sources, particularly poultry by-product meal (PBM) and insect exuviae meal, were investigated as viable alternatives to fishmeal (FM). The research study confirmed the successful replacement of FM with a combination of PBM and insect exuviae meal (up to 50%) in the diet of European seabass without compromising growth, feed conversion, gut health, and liver fat content. In particular, growth was robust with both PBM formulations, with the 25% PBM diet showing better results. Histological examinations showed good gut and liver health, contradicting the concerns of previous studies. This paper emphasizes the importance of holistic analyzes that go beyond growth parameters and include histomorphological investigations. The results show that PBM in combination with insect/exuviae meal is well tolerated by seabass, which is consistent with reports in the literature of it mitigating negative effects on gut health. A detailed analysis of the microbiota revealed a decrease in the Firmicutes/Proteobacteria ratio due to an increase in potentially pathogenic bacteria. However, the formulation containing insect exuviae partially counteracted this effect by preserving the beneficial Lactobacillus and promoting the synthesis of short-chain fatty acids (SCFAs), particularly butyrate. Chitin-rich components from insect exuviae were associated with improved gut health, which was supported by the increased production of SCFAs, which are known for their anti-inflammatory properties. This paper concludes that a combination of PBM and insect/exuviae meal can replace up to 50% of FM in the diet of seabass, supporting sustainable aquaculture practices. Despite some changes in the microbiota, the negative effects are mitigated by the addition of insect exuviae, highlighting their potential as a prebiotic to increase fish productivity and contribute to a circular economy in aquaculture
    • 

    corecore