3,419 research outputs found

    NIH COBRE-Natural Products Neuroscience Chemistry Services Under Chemistry and DM-PK CORE Facility

    Get PDF
    Department/Unit poster (BioMolecular Sciences). Corresponding author: Rama S. Gadepalli ([email protected])https://egrove.olemiss.edu/pharm_annual_posters_2022/1008/thumbnail.jp

    Mesoporous silica networks with improved diffusion and interference-rejecting properties for electroanalytical sensing

    Get PDF
    Mesoporous silica materials characterized by well-ordered microstructure and size- and shape-controlled pores have attracted much attention in the last years. These systems can be used for the development of functional thin films for advanced applications in catalysis and electrocatalysis, sensors and actuators, separation techniques, micro- and nano-electronic engineering [1-2]. In this work, \u201cinsulating\u201d and mesoporous silica films were prepared by spin coating a home-made silica sol on a cleaned ITO glass support. The mesoporosity was controlled by the use of Polystyrene (PS) latex beads with different dimensions (30-60-100 nm) as template. The number of successive multi-layer depositions was varied (1-2-3-5 layers) and after the template removal, stable, homogeneous and reproducible transparent films were obtained, characterized by an interconnected porous structure. The morphological features and the physicochemical and optical properties of the films and/or sol-precursors were studied by DLS, FE-SEM, AFM, UV-vis transmittance spectroscopy and wettability analyses. Moreover, a deep electrochemical characterization was also performed by Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). In particular, the use of two redox mediator probes [(K4Fe(CN)6) and (Ru(NH3)6Cl3)], presenting opposite charge and different diffusional behaviour, allowed the comprehension of the mass transport and charge transfer phenomena, evidencing the effects of spatial confinement and charge selection. In the case of \u201cinsulating\u201d films prepared without the use of PS latexes, we proved an experimental evidence for theoretical models [3] concerning electroinactive layer-modified electrodes, with a scan-rate-dependent variation of the CV shape due to a progressive increase in the diffusion coefficient inside the insulating layer. A complex balance between diverging effects (higher hydrophilicity and insulating behavior effects of silica) when increasing the numbers of layers was also observed [4]. In the case of mesoporous layers, a better electrochemical response of smaller pores and of thicker layers was found, due to two main cooperative phenomena: i) a diffusion modification from fully planar to radial-convergent at the pore-silica interface due to surface porosity; ii) the presence of pores in a hydrophilic matrix which leads to a capillary pull effects, stronger in the case of smaller hydrophilic pores. The easiness of preparation and the interesting properties of these devices pave the way towards their use in many fields, particularly trace electroanalysis in real matrices. In fact, for example, the porous and properly charged network is able to exclude interfering macromolecules (mucin in our case), preventing electrode biofouling and enhancing the performances of the sensor towards dopamine detection. References [1] M. Ogawa, Chem. Rec. 17 (2017) 217-232. [2] A. Walcarius, Chem. Soc. Rev. 42 (2013) 4098-4140. [3] D. Menshykau, R.G. Compton, Langmuir 25 (2009) 2519\u20132529. [4] V. Pifferi, L. Rimoldi, D. Meroni, F. Segrado, G. Soliveri, S. Ardizzone, L. Falciola, Electrochem. Commun. 81 (2017) 102-105

    Fast shower simulation in the ATLAS calorimeter

    Get PDF
    The time to simulate pp collisions in the ATLAS detector is largely dominated by the showering of electromagnetic particles in the heavy parts of the detector, especially the electromagnetic barrel and endcap calorimeters. Two procedures have been developed to accelerate the processing time of electromagnetic particles in these regions: (1) a fast shower parameterisation and (2) a frozen shower library. Both work by generating the response of the calorimeter to electrons and positrons with Geant 4, and then reintroduce the response into the simulation at runtime. In the fast shower parameterisation technique, a parameterisation is tuned to single electrons and used later by simulation. In the frozen shower technique, actual showers from low-energy particles are used in the simulation. Full Geant 4 simulation is used to develop showers down to ~1 GeV, at which point the shower is terminated by substituting a frozen shower. Judicious use of both techniques over the entire electromagnetic portion of the ATLAS calorimeter produces an important improvement of CPU time. We discuss the algorithms and their performance in this paper

    The ATLAS Simulation: an LHC Challenge

    Get PDF
    The simulation program for the ATLAS experiment at CERN is currently in a full operational mode and integrated into the ATLAS common analysis framework, Athena. The OO approach, based on GEANT4, and in use during the DC2 data challenge has been interfaced within Athena and to GEANT4 using the LCG dictionaries and Python scripting. The robustness of the application was proved during the DC2 data challenge. The Python interface has added the flexibility, modularity and interactivity that the simulation tool requires in order to be able to provide a common implementation of different full ATLAS simulation setups, test beams and cosmic ray applications. Generation, simulation and digitization steps were exercised for performance and robustness tests. The comparison with real data has been possible in the context of the ATLAS Combined Test Beam (2004) and ongoing cosmic ray studies

    ATLAS Simulation readiness for first data at LHC

    Get PDF
    The commissioning phase for the ATLAS experiment, in preparation for the new LHC machine to switch on, has presented challenges to nearly every aspect of the software development. The ATLAS simulation program, as a part of this phase, is now operational and fully functional within the ATLAS common software framework, Athena. The latest developments are directed towards enhanced versatility to cope with the increasing needs of developers and users and ease of use for the large ATLAS community, now with more than 2000 potential users. Emphasis in this talk is on recently added functionality recently added, validation and production strategy, and improved robustness and maintainability
    • 

    corecore