249 research outputs found

    Development of the algorithm for aircraft control at inaccurate measurement of the state vector and variable accuracy parameter

    Get PDF
    A parametric method of the synthesis of control in the closed circuit, taking into account explicitly generalized error of the inertial module, is presented. The law of control in the form of analytical formulas is typically assigned to the control program and does not change during flight of an unmanned aerial vehicle. This decreases the capabilities of the autonomous flight control system to overcome control errors, which occur for various reasons. To verify assumptions about a possibility of improving the accuracy of an aerial vehicle control by the data of the strapdown inertial navigation system on a certain time interval of autonomous operation, the calculation experiment was conducted with the use of the developed software complex, simulating operation of the automatic flight control system. Parametrization of the law of control is considered as the main contribution (the outcome). Introduction of the parameter made it possible to decrease a negative impact of measurement errors and other disturbing factors on accuracy of reaching by the point of flight destination. Through computer modeling, it was shown that it is possible to decrease the impact of a generalized measurement error on generation of values of control functions by changing the value of the parameter. Analytical expressions for the estimation of accuracy of automatic control at the known generalized error of the inertial module and limited disturbing influences were obtained. After analyzing the influence of these factors on accuracy of the object control, a set of recommendations on selection of a variable parameter of synthesis of control depending on precision level of the sensors, used in the inertial module of measuring sensors, was generated.Розглянуто розв’язання термінальної задачі управління та синтезований параметризований закон управління в аналітичному вигляді, який залежить від змінного параметра глибини прогнозу. Досліджено особливості впливу величини параметра управління на точність досягнення кінцевої точки, дані рекомендації з вибору параметра для нівелювання помилки інерційних вимірювань. Синтез управління здійснюється методом переслідування ведучої точки за інформацією, отриманою інтегруванням вимірювань фактичного прискорення і містить помилку, характерну для акселерометрів

    Accurate prediction of H<sub>3</sub>O<sup>+</sup> and D<sub>3</sub>O<sup>+</sup> sensitivity coefficients to probe a variable proton-to-electron mass ratio

    Get PDF
    The mass sensitivity of the vibration–rotation–inversion transitions of H316O+, H318O+, and D316O+ is investigated variationally using the nuclear motion program TROVE (Yurchenko, Thiel & Jensen). The calculations utilize new high-level ab initio potential energy and dipole moment surfaces. Along with the mass dependence, frequency data and Einstein A coefficients are computed for all transitions probed. Particular attention is paid to the Δ|k| = 3 and Δ|k − l| = 3 transitions comprising the accidentally coinciding |J, K = 0, v2 = 0+〉 and |J, K = 3, v2 = 0−〉 rotation–inversion energy levels. The newly computed probes exhibit sensitivities comparable to their ammonia and methanol counterparts, thus demonstrating their potential for testing the cosmological stability of the proton-to-electron mass ratio. The theoretical TROVE results are in close agreement with sensitivities obtained using the non-rigid and rigid inverter approximate models, confirming that the ab initio theory used in the present study is adequate

    Measurement of Time Resolution of Scintillation Detectors with EQR-15 Silicon Photodetectors for the Time-of-Flight Neutron Detector of the BM@N Experiment

    Full text link
    To study the dependence of the equation of state of high density nuclear matter on the term characterizing the isospin (proton-neutron) asymmetry of nuclear matter, it is necessary to measure azimuthal flow of neutrons as well as azimuthal flow of charged particles from a dense nuclear matter in the nuclear-nuclear collisions. For this purpose INR RAS is developing a new high-granular neutron detector which will be used in the BM@N experiment at the extracted beam of the Nuclotron accelerator at JINR (Dubna). This detector will identify neutrons and measure their energies in the heavy-ion collisions up to 4 GeV per nucleon. This article presents the results of measurements of the time resolution and light yields of samples of scintillation detectors with sizes 40×\times40×\times25 mm3^3 that will be used in a neutron detector based on the currently available fast plastic scintillator manufactured by JINR using an EQR15 11-6060D-S photodetector for light readout. For comparison, the results of measurements for a detector of the same size with a fast scintillator EJ-230 and with the same type of photodetector are given. The measurements were made on cosmic muons as well as on the electron synchrotron "Pakhra" of the Lebedev Physical Institute of the Russian Academy of Sciences located in Troitsk, Moscow

    Characteristics of the secondary electrons calibration beam of the accelerator S-25R "Pakhra"

    Full text link
    The characteristics of the secondary electrons` calibration quasi-monochromatic beam of the accelerator S-25R "Pakhra" of the Lebedev Physical Institute of the Russian Academy of Sciences (LPI) on the basis of magnet SP-57 are presented. With an electron energy in the range of 45-280 MeV, a collimator diameter in front of the trigger counters of 3 mm and copper Converter thicknesses of 1-3 mm, the energy resolution and beam intensity were 4.4-2.2% and around 16 e/sec, respectively

    On equilibrium structures of the water molecule

    Get PDF
    Equilibrium structures are fundamental entities in molecular sciences. They can be inferred from experimental data by complicated inverse procedures which often rely on several assumptions, including the Born-Oppenheimer approximation. Theory provides a direct route to equilibrium geometries. A recent high-quality ab initio semiglobal adiabatic potential-energy surface (PES) of the electronic ground state of water, reported by Polyansky [ ibid. 299, 539 (2003)] and called CVRQD here, is analyzed in this respect. The equilibrium geometries resulting from this direct route are deemed to be of higher accuracy than those that can be determined by analyzing experimental data. Detailed investigation of the effect of the breakdown of the Born-Oppenheimer approximation suggests that the concept of an isotope-independent equilibrium structure holds to about 3x10(-5) A and 0.02 degrees for water. The mass-independent [Born-Oppenheimer (BO)] equilibrium bond length and bond angle on the ground electronic state PES of water is r(e)(BO)=0.957 82 A and theta(e)(BO)=104.48(5)degrees, respectively. The related mass-dependent (adiabatic) equilibrium bond length and bond angle of (H2O)-O-16 is r(e)(ad)=0.957 85 A and theta(e)(ad)=104.50(0)degrees, respectively, while those of (D2O)-O-16 are r(e)(ad)=0.957 83 A and theta(e)(ad)=104.49(0)degrees. Pure ab initio prediction of J=1 and 2 rotational levels on the vibrational ground state by the CVRQD PESs is accurate to better than 0.002 cm(-1) for all isotopologs of water considered. Elaborate adjustment of the CVRQD PESs to reproduce all observed rovibrational transitions to better than 0.05 cm(-1) (or the lower ones to better than 0.0035 cm(-1)) does not result in noticeable changes in the adiabatic equilibrium structure parameters. The expectation values of the ground vibrational state rotational constants of the water isotopologs, computed in the Eckart frame using the CVRQD PESs and atomic masses, deviate from the experimentally measured ones only marginally, especially for A(0) and B-0. The small residual deviations in the effective rotational constants are due to centrifugal distortion, electronic, and non-Born-Oppenheimer effects. The spectroscopic (nonadiabatic) equilibrium structural parameters of (H2O)-O-16, obtained from experimentally determined A(0)(') and B-0(') rotational constants corrected empirically to obtain equilibrium rotational constants, are r(e)(sp)=0.957 77 A and theta(e)(sp)=104.48 degrees
    corecore