57 research outputs found

    The role of mesoscale eddies time and length scales on phytoplankton production

    Get PDF
    Horizontal mixing has been found to play a crucial role in the development of spatial plankton structures in the ocean. We study the influence of time and length scales of two different horizontal two-dimensional (2-D) flows on the growth of a single phytoplankton patch. To that end, we use a coupled model consisting of a standard three component ecological NPZ model and a flow model able to mimic the mesoscale structures observed in the ocean. Two hydrodynamic flow models are used: a flow based on Gaussian correlated noise, for which the Eulerian length and time scales can be easily controlled, and a multiscale velocity field derived from altimetry data in the North Atlantic ocean. We find the optimal time and length scales for the Gaussian flow model favouring the plankton spread. These results are used for an analysis of a more realistic altimetry flow. We discuss the findings in terms of the time scale of the NPZ model, the qualitative interaction of the flow with the reaction front and a Finite-Time Lyapunov Exponent analysis

    Transition to Chaotic Phase Synchronization through Random Phase Jumps

    Full text link
    Phase synchronization is shown to occur between opposite cells of a ring consisting of chaotic Lorenz oscillators coupled unidirectionally through driving. As the coupling strength is diminished, full phase synchronization cannot be achieved due to random generation of phase jumps. The brownian dynamics underlying this process is studied in terms of a stochastic diffusion model of a particle in a one-dimensional medium.Comment: Accepted for publication in IJBC, 10 pages, 5 jpg figure

    Application of nonlinear forecasting techniques for meteorological modeling

    Full text link

    Quasiperiodic Patterns in Boundary-Modulated Excitable Waves

    Get PDF
    We investigate the impact of the domain shape on wave propagation in excitable media. Channelled domains with sinusoidal boundaries are considered. Trains of fronts generated periodically at an extreme of the channel are found to adopt a quasiperiodic spatial configuration stroboscopically frozen in time. The phenomenon is studied in a model for the photo-sensitive Belousov-Zabotinsky reaction, but we give a theoretical derivation of the spatial return maps prescribing the height and position of the successive fronts that is valid for arbitrary excitable reaction-diffusion systems.Comment: 4 pages (figures included

    Percolation thresholds in chemical disordered excitable media

    Get PDF
    The behavior of chemical waves advancing through a disordered excitable medium is investigated in terms of percolation theory and autowave properties in the framework of the light-sensitive Belousov-Zhabotinsky reaction. By controlling the number of sites with a given illumination, different percolation thresholds for propagation are observed, which depend on the relative wave transmittances of the two-state medium considered

    RADAR ON RAIA: High frequency radars in the RAIA Observatory

    Get PDF
    9th International Workshop on Marine Technology (MARTECH), virtual, 16-18 June 2021The RADAR ON RAIA project aims to update and extend beyond the Galician border the High Frequency (HF) radar network that has been operating since 2011 in the framework of the RAIA Observatory. The Project is allowing the establishment of a cross-border collaboration beyond the physical infrastructure itself, developing a sharing strategy of maintenance procedures, validation and data processing on both sides of the border, as well as an easy and public access to all the information. In addition, new products are being developed to exploit the potential of the HF radar technologyN
    • 

    corecore