47 research outputs found
Exponential stability of the wave equation with memory and time delay
We study the asymptotic behaviour of the wave equation with viscoelastic
damping in presence of a time-delayed damping. We prove exponential stability
if the amplitude of the time delay term is small enough
N-[3-(2,6-Dimethylanilino)-1-methylbut-2-enylidene]-2,6-dimethylanilinium chloride1
The title salt, C21H27N2
+·Clâ resulted from the condensation between 2,6-dimethylÂaniline and acetylÂacetone in acidified ethanol. The bulky cation is stabilized in a ÎČ-iminoÂenamine tautomeric form, and presents a W-shaped conformation. The benzene rings are arranged almost parallel, with a dihedral angle of 6.58â
(4)° between the mean planes. Both NâH groups in the cation form strong hydrogen bonds with two symmetry-related chloride anions. The resulting supraÂmolecular structure is a one dimensional polymer running along [001], alternating cations and anions. The ÏâÏ interÂaction observed in the molÂecule, characterized by a centroidâcentroid separation of 4.298â
(4)â
Ă
, is thus extended to the chains, with separations of 5.222â
(4)â
Ă
between benzene rings of neighbouring cations in the crystal
HST PanCET program: A Cloudy Atmosphere for the promising JWST target WASP-101b
We present results from the first observations of the Hubble Space Telescope
(HST) Panchromatic Comparative Exoplanet Treasury (PanCET) program for
WASP-101b, a highly inflated hot Jupiter and one of the community targets
proposed for the James Webb Space Telescope (JWST) Early Release Science (ERS)
program. From a single HST Wide Field Camera 3 (WFC3) observation, we find that
the near-infrared transmission spectrum of WASP-101b contains no significant
HO absorption features and we rule out a clear atmosphere at 13{\sigma}.
Therefore, WASP-101b is not an optimum target for a JWST ERS program aimed at
observing strong molecular transmission features. We compare WASP-101b to the
well studied and nearly identical hot Jupiter WASP-31b. These twin planets show
similar temperature-pressure profiles and atmospheric features in the
near-infrared. We suggest exoplanets in the same parameter space as WASP-101b
and WASP-31b will also exhibit cloudy transmission spectral features. For
future HST exoplanet studies, our analysis also suggests that a lower count
limit needs to be exceeded per pixel on the detector in order to avoid unwanted
instrumental systematics.Comment: 7 pages, 4 figures, 1 table, Accepted to ApJ
Geometric and Statistical Properties of the Mean-Field HP Model, the LS Model and Real Protein Sequences
Lattice models, for their coarse-grained nature, are best suited for the
study of the ``designability problem'', the phenomenon in which most of the
about 16,000 proteins of known structure have their native conformations
concentrated in a relatively small number of about 500 topological classes of
conformations. Here it is shown that on a lattice the most highly designable
simulated protein structures are those that have the largest number of
surface-core switchbacks. A combination of physical, mathematical and
biological reasons that causes the phenomenon is given. By comparing the most
foldable model peptides with protein sequences in the Protein Data Bank, it is
shown that whereas different models may yield similar designabilities,
predicted foldable peptides will simulate natural proteins only when the model
incorporates the correct physics and biology, in this case if the main folding
force arises from the differing hydrophobicity of the residues, but does not
originate, say, from the steric hindrance effect caused by the differing sizes
of the residues.Comment: 12 pages, 10 figure
Mean-Field HP Model, Designability and Alpha-Helices in Protein Structures
Analysis of the geometric properties of a mean-field HP model on a square
lattice for protein structure shows that structures with large number of switch
backs between surface and core sites are chosen favorably by peptides as unique
ground states. Global comparison of model (binary) peptide sequences with
concatenated (binary) protein sequences listed in the Protein Data Bank and the
Dali Domain Dictionary indicates that the highest correlation occurs between
model peptides choosing the favored structures and those portions of protein
sequences containing alpha-helices.Comment: 4 pages, 2 figure
Utilization of galactomannan from Gleditsia triacanthos in polysaccharide-based films : effects of interactions between film constituents on film properties
The objective of this work was to evaluate the effect of the concentrations of Gleditsia triacanthos galactomannan and glycerol and the presence of corn oil in the physical properties of edible films. The influence of interactions between those constituents on films' permeability to gases (water vapour, CO2 and O2), solubility in water, mechanical properties and colour was evaluated. The effects of those variables were analysed according to a 23 factorial design; regression coefficients were used to understand the influence of each variable (factor) on the studied properties, and a multifactor model was developed. Results show that galactomannan concentration is the most significant factor affecting the studied properties; moreover, the increase of plasticizer concentration and the presence of oil showed to be the most influent in the particular cases of solubility and transport properties (water vapour permeability and O2 permeability), respectively. These results show that galactomannan films' properties can be tailored to allow their use as alternative to non-biodegradable, non-edible packaging materials.The author M. A. Cerqueira is recipient of a fellowship from Fundacao para a Ciencia e Tecnologia (FCT, SFRH/BPD/72753/2010) and B. W. S. Souza is a recipient of a fellowship from the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior, Brazil (Capes, Brazil)
Disruption of mouse Slx4, a regulator of structure-specific nucleases, phenocopies Fanconi anemia
International audienc
Effects of interactions between the constituents of chitosan-edible films on their physical properties
The main objective of this work was to evaluate the effect of chitosan and plasticizer concentrations and oil presence on the physical and mechanical properties of edible films. The effect of the film constituents and their in-between interactions were studied through the evaluation of permeability, opacity and mechanical properties. The effects of the studied variables (concentrations of chitosan, plasticizer and oil) were analysed according to a 2 3 factorial design. Pareto charts were used to identify the most significant factors in the studied properties (water vapour, oxygen and carbon dioxide permeability; opacity; tensile strength; elongation at break and Young's modulus). When addressing the influence of the interactions between the films' constituents on the properties above, results show that chitosan and plasticizer concentrations are the most significant factors affecting most of the studied properties, while oil incorporation has shown to be of a great importance in the particular case of transport properties (gas permeability), essentially due to its hydrophobicity. Water vapour permeability values (ranging from 1. 62 Ă 10 -11 to 4. 24 Ă 10 -11 g m -1 s -1 Pa -1) were half of those reported for cellophane films. Also the mechanical properties (tensile strength values from 0. 43 to 13. 72 MPa and elongation-at-break values from 58. 62% to 166. 70%) were in the range of those reported for LDPE and HDPE. Based on these results, we recommend the use of 1. 5% (w/w) chitosan concentration to produce films, where the oil and plasticizer proportions will have to be adjusted in a case-by-case basis according to the use intended for the material. This work provides a useful guide to the formulation of chitosan-based film-forming solutions for food packaging applications.The author MA Cerqueira is a recipient of a fellowship from Fundacao para a Ciencia e Tecnologia (FCT, SFRH/BD/23897/2005) and BWS Souza is a recipient of a fellowship from the Coordenacao Aperfeicoamento de Pessoal de Nivel Superior, Brazil (Capes, Brazil)
Moonraker -- Enceladus Multiple Flyby Mission
Enceladus, an icy moon of Saturn, possesses an internal water ocean and jets
expelling ocean material into space. Cassini investigations indicated that the
subsurface ocean could be a habitable environment having a complex interaction
with the rocky core. Further investigation of the composition of the plume
formed by the jets is necessary to fully understand the ocean, its potential
habitability, and what it tells us about Enceladus' origin. Moonraker has been
proposed as an ESA M-class mission designed to orbit Saturn and perform
multiple flybys of Enceladus, focusing on traversals of the plume. The proposed
Moonraker mission consists of an ESA-provided platform, with strong heritage
from JUICE and Mars Sample Return, and carrying a suite of instruments
dedicated to plume and surface analysis. The nominal Moonraker mission has a
duration of 13.5 years. It includes a 23-flyby segment with 189 days allocated
for the science phase, and can be expanded with additional segments if
resources allow. The mission concept consists in investigating: i) the
habitability conditions of present-day Enceladus and its internal ocean, ii)
the mechanisms at play for the communication between the internal ocean and the
surface of the South Polar Terrain, and iii) the formation conditions of the
moon. Moonraker, thanks to state-of-the-art instruments representing a
significant improvement over Cassini's payload, would quantify the abundance of
key species in the plume, isotopic ratios, and physical parameters of the plume
and the surface. Such a mission would pave the way for a possible future landed
mission.Comment: Accepted for publication in The Planetary Science Journa