554 research outputs found

    Nematicidal and fertilizing effects of chicken manure, fresh and composted olive mill wastes on organic melon

    Get PDF
    Abstract The fertilizing and nematicidal effects of three organic amendments were evaluated in a pot experiment on melon plants infested by the root-knot nematode Meloidogyne incognita. A soil artificially infested with 4 eggs and juveniles/ ml soil of the nematode was amended with: a) virgin olive pomace (VOP); b) composted olive pomace (COP); c) chicken manure based fertilizer (CM) and d) chicken manure based fertilizer combined with the biological control agent Paecilomyces lilacinus strain 251, brand name BioAct WG (CMB). VOP was applied at doses of 11 (VOP-A), 22 (VOP-B) and 44 t/ha (VOP-C); COP at 4.5 (COP-A), 9 (COP-B) and 18 t/ha (COP-C); CM at 3 t/ha and CMB at 3 t/ha combined with 4 kg/ha of BioAct WG. Untreated soil was used as control. The treatments CM, CMB, VOP-B and COP-B were established on the basis of N requirement of melon plants (120 kg/ha) taking into account soil and amendments N availability. Two weeks later amendment application and nematode inoculation, the soil was poured in 4.8 l clay pots which were arranged in a greenhouse according to a randomized block design with ten replications for each treatment. A one-month old melon seedling (cv. Galia) was transplanted in each pot and organic farming management practices were used during the growing period. At the end of the experiment, 60 days after transplant, plants were uprooted and height, fresh and dry shoot and root weights were recorded. Root gall index, on the roots, caused by the nematode attack, was estimated according to a 0–5 scale. Final nematode population density and reproduction rate were also calculated for each pot. All data were subjected to statistical analysis of variance (ANOVA) and means compared according to Least Significant Difference's Test. Nematode population and root infestation were significantly suppressed by the addition of all amendments, compared to untreated control. However, CM and CMB resulted in a total more suppressive effect and in a significantly higher plant growth in comparison to all the other treatments. A significant correlation was found between root gall index and eggs and juveniles/g root and final nematode population density. No signifycant correlations were found between nematological parameters or plant growth parameters and amendment doses

    White matter integrity as a predictor of response to treatment in first episode psychosis

    Get PDF
    The integrity of brain white matter connections is central to a patient's ability to respond to pharmacological interventions. This study tested this hypothesis using a specific measure of white matter integrity, and examining its relationship to treatment response using a prospective design in patients within their first episode of psychosis. Diffusion tensor imaging data were acquired in 63 patients with first episode psychosis and 52 healthy control subjects (baseline). Response was assessed after 12 weeks and patients were classified as responders or non-responders according to treatment outcome. At this second time-point, they also underwent a second diffusion tensor imaging scan. Tract-based spatial statistics were used to assess fractional anisotropy as a marker of white matter integrity. At baseline, non-responders showed lower fractional anisotropy than both responders and healthy control subjects (P < 0.05; family-wise error-corrected), mainly in the uncinate, cingulum and corpus callosum, whereas responders were indistinguishable from healthy control subjects. After 12 weeks, there was an increase in fractional anisotropy in both responders and non-responders, positively correlated with antipsychotic exposure. This represents one of the largest, controlled investigations of white matter integrity and response to antipsychotic treatment early in psychosis. These data, together with earlier findings on cortical grey matter, suggest that grey and white matter integrity at the start of treatment is an important moderator of response to antipsychotics. These findings can inform patient stratification to anticipate care needs, and raise the possibility that antipsychotics may restore white matter integrity as part of the therapeutic response

    Do AKT1, COMT and FAAH influence reports of acute cannabis intoxication experiences in patients with first episode psychosis, controls and young adult cannabis users?

    Get PDF
    This is the final version. Available from the publisher via the DOI in this record.Epidemiological and biological evidence support the association between heavy cannabis use and psychosis. However, it is unclear which cannabis users are susceptible to its psychotogenic effect. Therefore, understanding genetic factors contributing to this relationship might prove an important strategy to identify the mechanisms underlying cannabis-associated psychotic experiences. We aimed to determine how variation in AKT1, COMT and FAAH genotypes, and their interaction with three different groups (first episode psychosis (FEP) patients (n = 143), controls (n = 92) and young adult (YA) cannabis users n = 485)) influenced cannabis experiences, in those who had used cannabis at least once. We investigated the role of AKT1 (rs2494732), COMT Val158Met (rs4680) and FAAH (rs324420) on cannabis experiences by combining data from a large case-control study of FEP patients, with a naturalistic study of YA cannabis users (n = 720). Outcome measures were cannabis-induced psychotic-like experiences (cPLEs) and euphoric experiences (cEEs). We used linear mixed effects models to assess the effects of each genotype and their interaction with group, adjusting for age, sex, ethnicity, age of first cannabis use, years of use and frequency. cPLEs were more frequent in FEP patients than controls and YA cannabis users. cEEs were more prevalent in YA cannabis users than FEP patients or controls. Variation in AKT1, COMT or FAAH was not associated with cPLEs/cEEs. There was no interaction between genotype and group (FEP cases, controls and YA cannabis users) on cPLEs/cEEs. In conclusion, AKT1, COMT or FAAH did not modulate specific psychotomimetic response to cannabis and did not interact with group, contrary to previous research.Medical Research Council (MRC

    Enhanced B-cell differentiation and reduced proliferative capacity in chronic hepatitis C and chronic hepatitis B virus infections

    Get PDF
    BACKGROUND & AIMS: Chronic microial infections aare frequently associated with B-cell activation and polyclonal proliferation, potentially leading to autoimmunity and lymphoproliferative disorders. We assessed B-cell phenotype and function in chronic hepatitis B (HBV) and chronic hepatitis C (HCV) virus infection. METHODS: We studied 70 patients with chronic HCV infection, 34 with chronic HBV infection and 54 healthy controls, B-cell phenotype was assessed by flow cytometry using monoclonal antibodies specific for CD27, the CD69, CD71, and CD86 activation markers and the chemokine receptor CXCR3. Differentiation into immunoglobulin-producing cells (IPC) was analysed by ELISpot upon stimulation and with CD40 ligand+IL-10 as surrogate bystander T-cell help or CpG oligodeoxynucleotide+IL-2, as innate immunity signal. Proliferation was examined by cytometry using carboxyfluorescein diacetate succinimidyl ester (CFSE) after stimulation with CpG. RESULTS: A significantly higher proportion of B cells from both HCV-and HBV-infected patients expressed activation markers compared with controls and a positive correlation was found between CXCR3(+) B cells and HCV RNA values. Memory B cells from patients with chronic HCV and HBV infections showed enhanced differentiation into IPC compared with controls, although this was restricted to IgG and at a lower level in HCV-compared with HBV-infected patients. Moreover, patients' activated B cells displayed significantly lower proliferative ability compared to healthy donors despite low expression of the FcRL4 exhaustin marker. CONCLUSIONS: B-cell activation, but not exhaustion, is common in chronic viral hepatitis. However, enhanced B-cell differentiation and deficient proliferative capacity were not associated with commitment to terminal differentiation

    Susceptibility and dilution effects of the kagome bi-layer geometrically frustrated network. A Ga-NMR study of SrCr_(9p)Ga_(12-9p)O_(19)

    Full text link
    We present an extensive gallium NMR study of the geometrically frustrated kagome bi-layer compound SrCr_(9p)Ga_(12-9p)O_(19) (Cr^3+, S=3/2) over a broad Cr-concentration range (.72<p<.95). This allows us to probe locally the kagome bi-layer susceptibility and separate the intrinsic properties due to the geometric frustration from those related to the site dilution. Our major findings are: 1) The intrinsic kagome bi-layer susceptibility exhibits a maximum in temperature at 40-50 K and is robust to a dilution as high as ~20%. The maximum reveals the development of short range antiferromagnetic correlations; 2) At low-T, a highly dynamical state induces a strong wipe-out of the NMR intensity, regardless of dilution; 3) The low-T upturn observed in the macroscopic susceptibility is associated to paramagnetic defects which stem from the dilution of the kagome bi-layer. The low-T analysis of the NMR lineshape suggests that the defect can be associated with a staggered spin-response to the vacancies on the kagome bi-layer. This, altogether with the maximum in the kagome bi-layer susceptibility, is very similar to what is observed in most low-dimensional antiferromagnetic correlated systems; 4) The spin glass-like freezing observed at T_g=2-4 K is not driven by the dilution-induced defects.Comment: 19 pages, 19 figures, revised version resubmitted to PRB Minor modifications: Fig.11 and discussion in Sec.V on the NMR shif

    Predicting onset of early- and late-treatment resistance in first-episode schizophrenia patients using advanced shrinkage statistical methods in a small sample

    Get PDF
    Evidence suggests there are two treatment-resistant schizophrenia subtypes (i.e. early treatment resistant (E-TR) and late-treatment resistant (L-TR)). We aimed to develop prediction models for estimating individual risk for these outcomes by employing advanced statistical shrinkage methods. 239 first-episode schizophrenia (FES) patients were followed-up for approximately 5 years after first presentation to psychiatric services; of these, n=56 (25.2%) were defined as E-TR and n=24 (12.6%) were defined as L-TR. Using known risk factors for poor schizophrenia outcomes, we developed prediction models for E-TR and L-TR using LASSO and RIDGE logistic regression models. Models’ internal validation was performed employing Harrell's optimism-correction with repeated cross-validation; their predictive accuracy was assessed through discrimination and calibration. Both LASSO and RIDGE models had high discrimination, good calibration. While LASSO had moderate sensitivity for estimating an individual risk for E-TR and L-TR, sensitivity estimated for RIDGE model for these outcomes was extremely low, which was due to having a very large estimated optimism. Although it was possible to discriminate with sufficient accuracy who would meet criteria for E-TR and L-TR during the 5-year follow-up after first contact with mental health services for schizophrenia, further work is necessary to improve sensitivity for these models

    A blood-free modeling approach for the quantification of the blood-to-brain tracer exchange in TSPO PET imaging

    Get PDF
    Introduction: Recent evidence suggests the blood-to-brain influx rate (K1) in TSPO PET imaging as a promising biomarker of blood–brain barrier (BBB) permeability alterations commonly associated with peripheral inflammation and heightened immune activity in the brain. However, standard compartmental modeling quantification is limited by the requirement of invasive and laborious procedures for extracting an arterial blood input function. In this study, we validate a simplified blood-free methodologic framework for K1 estimation by fitting the early phase tracer dynamics using a single irreversible compartment model and an image-derived input function (1T1K-IDIF). Methods: The method is tested on a multi-site dataset containing 177 PET studies from two TSPO tracers ([11C]PBR28 and [18F]DPA714). Firstly, 1T1K-IDIF K1 estimates were compared in terms of both bias and correlation with standard kinetic methodology. Then, the method was tested on an independent sample of [11C]PBR28 scans before and after inflammatory interferon-α challenge, and on test–retest dataset of [18F]DPA714 scans. Results: Comparison with standard kinetic methodology showed good-to-excellent intra-subject correlation for regional 1T1K-IDIF-K1 (ρintra = 0.93 ± 0.08), although the bias was variable depending on IDIF ability to approximate blood input functions (0.03–0.39 mL/cm3/min). 1T1K-IDIF-K1 unveiled a significant reduction of BBB permeability after inflammatory interferon-α challenge, replicating results from standard quantification. High intra-subject correlation (ρ = 0.97 ± 0.01) was reported between K1 estimates of test and retest scans. Discussion: This evidence supports 1T1K-IDIF as blood-free alternative to assess TSPO tracers’ unidirectional blood brain clearance. K1 investigation could complement more traditional measures in TSPO studies, and even allow further mechanistic insight in the interpretation of TSPO signal

    FoxO1, A2M, and TGF-beta 1: three novel genes predicting depression in gene X environment interactions are identified using cross-species and cross-tissues transcriptomic and miRNomic analyses

    Get PDF
    To date, gene-environment (GxE) interaction studies in depression have been limited to hypothesis-based candidate genes, since genome-wide (GWAS)-based GxE interaction studies would require enormous datasets with genetics, environmental, and clinical variables. We used a novel, cross-species and cross-tissues "omics" approach to identify genes predicting depression in response to stress in GxE interactions. We integrated the transcriptome and miRNome profiles from the hippocampus of adult rats exposed to prenatal stress (PNS) with transcriptome data obtained from blood mRNA of adult humans exposed to early life trauma, using a stringent statistical analyses pathway. Network analysis of the integrated gene lists identified the Forkhead box protein O1 (FoxO1), Alpha-2-Macroglobulin (A2M), and Transforming Growth Factor Beta 1 (TGF-beta 1) as candidates to be tested for GxE interactions, in two GWAS samples of adults either with a range of childhood traumatic experiences (Grady Study Project, Atlanta, USA) or with separation from parents in childhood only (Helsinki Birth Cohort Study, Finland). After correction for multiple testing, a meta-analysis across both samples confirmed six FoxO1 SNPs showing significant GxE interactions with early life emotional stress in predicting depressive symptoms. Moreover, in vitro experiments in a human hippocampal progenitor cell line confirmed a functional role of FoxO1 in stress responsivity. In secondary analyses, A2M and TGF-beta 1 showed significant GxE interactions with emotional, physical, and sexual abuse in the Grady Study. We therefore provide a successful 'hypothesis-free' approach for the identification and prioritization of candidate genes for GxE interaction studies that can be investigated in GWAS datasets
    corecore