80 research outputs found

    Critical current anisotropy in Nd-1111 single crystals and the infuence of neutron irradiation

    Full text link
    We report on angle-resolved magnetization measurements on NdFeAsO0.65_{0.65}F0.35_{0.35} (Nd-1111) single crystals. The field dependence of the critical current density, JcJ_c, is non-monotonous in these crystals at all orientations and temperatures due to the fishtail effect, which strongly influences the angular dependence of JcJ_c. The currents decrease as the field is tilted from the crystallographic c-axis at low fields, but increase at high fields. A peak occurs in the angular dependence of JcJ_c at intermediate fields. The critical currents are significantly enhanced after irradiation with fast neutrons and the fishtail disappears. The different current anisotropies at low and high fields, however, persist. We discuss the data in the framework of the anisotropic scaling approach and propose a transition from dominant pinning by large defects of low density at low fields to pinning by small defects of high density at high fields in the pristine crystal. Strong pinning dominates at all fields after the irradiation, and the angular dependence of JcJ_c can be described by anisotropic scaling only after an appropriate extension to this pinning regime

    Ground state correlations and structure of odd spherical nuclei

    Get PDF
    It is well known that the Pauli principle plays a substantial role at low energies because the phonon operators are not ideal boson operators. Calculating the exact commutators between the quasiparticle and phonon operators one can take into account the Pauli principle corrections. Besides the ground state correlations due to the quasiparticle interaction in the ground state influence the single particle fragmentation as well. In this paper, we generalize the basic QPM equations to account for both mentioned effects. As an illustration of our approach, calculations on the structure of the low-lying states in 131^{131}Ba have been performed.Comment: 12 pages, 1 figur

    Interplanetary Protons versus Interacting Protons in the 2017 September 10 Solar Eruptive Event

    Get PDF
    We analyze the relativistic proton emission from the Sun during the eruptive event on 2017 September 10, which caused a ground-level enhancement (GLE 72) registered by the worldwide network of neutron monitors. Using the neutron monitor data and interplanetary transport modeling both along and across interplanetary magnetic field (IMF) lines, we deduce parameters of the proton injection into the interplanetary medium. The inferred injection profile of the interplanetary protons is compared with the profile of the >100 MeV γ-ray emission observed by the Fermi Large Area Telescope, attributed to pion production from the interaction of >300 MeV protons at the Sun. GLE 72 started with a prompt component that arrived along the IMF lines. This was followed by a more prolonged enhancement caused by protons arriving at the Earth across the IMF lines from the southwest. The interplanetary proton event is modeled using two sources—one source at the root of the Earth-connected IMF line and another source situated near the solar western limb. The maximum phase of the second injection of interplanetary protons coincides with the maximum phase of the prolonged >100 MeV γ-ray emission that originated from a small area at the solar western limb, below the current sheet trailing the associated coronal mass ejection (CME). A possible common source of interacting protons and interplanetary protons is discussed in terms of proton acceleration at the CME bow shock versus coronal (re-)acceleration in the wake of the CME

    Multi-Dimensional, Compressible Viscous Flow on a Moving Voronoi Mesh

    Full text link
    Numerous formulations of finite volume schemes for the Euler and Navier-Stokes equations exist, but in the majority of cases they have been developed for structured and stationary meshes. In many applications, more flexible mesh geometries that can dynamically adjust to the problem at hand and move with the flow in a (quasi) Lagrangian fashion would, however, be highly desirable, as this can allow a significant reduction of advection errors and an accurate realization of curved and moving boundary conditions. Here we describe a novel formulation of viscous continuum hydrodynamics that solves the equations of motion on a Voronoi mesh created by a set of mesh-generating points. The points can move in an arbitrary manner, but the most natural motion is that given by the fluid velocity itself, such that the mesh dynamically adjusts to the flow. Owing to the mathematical properties of the Voronoi tessellation, pathological mesh-twisting effects are avoided. Our implementation considers the full Navier-Stokes equations and has been realized in the AREPO code both in 2D and 3D. We propose a new approach to compute accurate viscous fluxes for a dynamic Voronoi mesh, and use this to formulate a finite volume solver of the Navier-Stokes equations. Through a number of test problems, including circular Couette flow and flow past a cylindrical obstacle, we show that our new scheme combines good accuracy with geometric flexibility, and hence promises to be competitive with other highly refined Eulerian methods. This will in particular allow astrophysical applications of the AREPO code where physical viscosity is important, such as in the hot plasma in galaxy clusters, or for viscous accretion disk models.Comment: 26 pages, 21 figures. Submitted to MNRA

    Investigating the origins of two extreme solar particle events: proton source profile and associated electromagnetic emissions

    Get PDF
    We analyze the high-energy particle emission from the Sun in two extreme solar particle events, in which protons are accelerated to relativistic energies and can cause a significant signal even in the ground-based particle detectors. Analysis of a relativistic proton event is based on modeling of the particle transport and interaction, from a near-Sun source through the solar wind and the Earth’s magnetosphere and atmosphere to a detector on the ground. This allows us to deduce the time profile of the proton source at the Sun and compare it with observed electromagnetic emissions. The 2 May 1998 event is associated with flare and coronal mass ejection (CME) well observed by the Nan¸cay Radioheliograph, so that the images of radio sources are available. For the 2 November 2003 event, there are available the low-corona images of the CME liftoff obtained at the Mauna Loa Solar Observatory. Those complementary data sets are analyzed jointly with the broadband dynamic radio spectra, EUV images and other data available for both events. We find a common scenario for both eruptions, including the flare’s dual impulsive phase, the CME-launch-associated decimetric-continuum burst, and the late, low-frequency type III radio bursts at the time of the relativistic proton injection into the interplanetary medium. The analysis supports the idea that the two considered events start with emission of relativistic protons previously accelerated during the flare and CME launch, then trapped in large-scale magnetic loops and later released by the expanding CME
    • …
    corecore