3,173 research outputs found
Nonlinear dynamics of flexural wave turbulence
The Kolmogorov-Zakharov spectrum predicted by the Weak Turbulence Theory
remains elusive for wave turbulence of flexural waves at the surface of an thin
elastic plate. We report a direct measurement of the nonlinear timescale
related to energy transfer between waves. This time scale is extracted
from the space-time measurement of the deformation of the plate by studying the
temporal dynamics of wavelet coefficients of the turbulent field. The central
hypothesis of the theory is the time scale separation between dissipative time
scale, nonlinear time scale and the period of the wave (). We
observe that this scale separation is valid in our system. The discrete modes
due to the finite size effects are responsible for the disagreement between
observations and theory. A crossover from continuous weak turbulence and
discrete turbulence is observed when the nonlinear time scale is of the same
order of magnitude as the frequency separation of the discrete modes. The
Kolmogorov-Zakharov energy cascade is then strongly altered and is frozen
before reaching the dissipative regime expected in the theory.Comment: accepted for publication in Physical Review
Quantum computation with phase drift errors
We present results of numerical simulations of the evolution of an ion trap
quantum computer made out of 18 ions which are subject to a sequence of nearly
15000 laser pulses in order to find the prime factors of N=15. We analyze the
effect of random and systematic phase drift errors arising from inaccuracies in
the laser pulses which induce over (under) rotation of the quantum state.
Simple analytic estimates of the tolerance for the quality of driving pulses
are presented. We examine the use of watchdog stabilization to partially
correct phase drift errors concluding that, in the regime investigated, it is
rather inefficient.Comment: 5 pages, RevTex, 2 figure
Non-Resonant Effects in Implementation of Quantum Shor Algorithm
We simulate Shor's algorithm on an Ising spin quantum computer. The influence
of non-resonant effects is analyzed in detail. It is shown that our ``''-method successfully suppresses non-resonant effects even for relatively
large values of the Rabi frequency.Comment: 11 pages, 13 figure
Is Dark Energy Dynamical? Prospects for an Answer
Recent data advances offer the exciting prospect of a first look at whether
dark energy has a dynamical equation of state or not. While formally theories
exist with a constant equation of state, they are nongeneric -- Einstein's
cosmological constant is a notable exception. So limits on the time variation,
w', directly tell us crucial physics. Two recent improvements in supernova data
from the Hubble Space Telescope allow important steps forward in constraining
the dynamics of dark energy, possessing the ability to exclude models with
w'\ga 1, if the universe truly has a cosmological constant. These data bring us
much closer to the ``systematics'' era, where further improvements will come
predominantly from more accurate, not merely more, observations. We examine the
possible gains and point out the complementary roles of space and ground based
observations in the near future. To achieve the leap to precision understanding
of dark energy in the next generation will require specially designed space
based measurements; we estimate the confidence level of detection of dynamics
(e.g. distinguishing between and ) will be ~1.8\sigma after the
ongoing generation, improving to more than 6.5\sigma in the dedicated space
generation.Comment: 6 pages, 2 figures; version accepted to Phys. Rev.
Spectroscopy of the Lens Galaxy of Q0957+561A,B. Implications of a possible central massive dark object
We present new long-slit William Herschel Telescope spectroscopic
observations of the lens galaxy G1 associated with the double-imaged QSO
0957+561A,B. The obtained central stellar velocity dispersion, sigma_l = 310
+/- 20 km/s, is in reasonable agreement with other measurements of this
dynamical parameter. Using all updated measurements of the stellar velocity
dispersion in the internal region of the galaxy (at angular separations < 1".5)
and a simple isotropic model, we discuss the mass of a possible central massive
dark object. It is found that the data of Falco et al. (1997) suggest the
existence of an extremely massive object of (0.5-2.1) x 10E10/h M_\odot (80%
confidence level), whereas the inclusion of very recent data (Tonry & Franx
1998, and this paper) substantially changes the results: the compact central
mass must be 6 x10E9/h M_\odot at the 90% confidence level. We note that,
taking into account all the available dynamical data, a compact nucleus with a
mass of 10E9/h M_\odot (best fit) cannot be ruled out.Comment: 20 pages, 10 figures ApJ, in pres
- …