3,201 research outputs found
Lattice Dynamics in the Half-Space, II. Energy Transport Equation
We consider the lattice dynamics in the half-space. The initial data are
random according to a probability measure which enforces slow spatial variation
on the linear scale . We establish two time regimes. For
times of order , , locally the measure
converges to a Gaussian measure which is time stationary with a covariance
inherited from the initial measure (non-Gaussian, in general). For times of
order , this covariance changes in time and is governed by a
semiclassical transport equation.Comment: 35 page
A fitness model for the Italian Interbank Money Market
We use the theory of complex networks in order to quantitatively characterize
the formation of communities in a particular financial market. The system is
composed by different banks exchanging on a daily basis loans and debts of
liquidity. Through topological analysis and by means of a model of network
growth we can determine the formation of different group of banks characterized
by different business strategy. The model based on Pareto's Law makes no use of
growth or preferential attachment and it reproduces correctly all the various
statistical properties of the system. We believe that this network modeling of
the market could be an efficient way to evaluate the impact of different
policies in the market of liquidity.Comment: 5 pages 5 figure
Durability of gerber saddles in RC bridges: Analyses and applications (Musmeci Bridge, Italy)
Guaranteeing adequate safety levels in critical infrastructures such as bridges is essential to modern societies and their vital services. Bridges with reinforced concrete structures are subject to deterioration, especially due to corrosion effects. Gerber saddles are among the key components of bridges which are especially exposed to environmental actions due to their position and reduced possibility of inspection. In this paper, a framework for the durability analysis of these components is proposed, considering the simultaneous presence of permanent loads and environmental actions under the form of chloride ions. Nonlinear numerical simulations adopting the finite element code ATENA are performed, accounting for chloride ingress analyses. The presence of cracks (due to applied loads and/or design/construction defects) which may speed-up corrosion propagation, steel reinforcement loss, cracking and spalling, and their effects on the load-bearing capacity is considered. This framework has been applied to the Gerber saddles of a prominent reinforced concrete (RC) bridge, namely the Musmeci bridge in Potenza, Italy. Durability analyses made it possible to evaluate the saddles’ strength capacity (i) at the time of construction, (ii) after forty-five years since the construction, and (iii) at an extended time of fifty years. The results show that corrosion can influence both the ultimate load capacity and the collapse mechanism
Tumor cellular and microenvironmental cues controlling invadopodia formation
During the metastatic progression, invading cells might achieve degradation and subsequent invasion into the extracellular matrix (ECM) and the underlying vasculature using invadopodia, F-actin-based and force-supporting protrusive membrane structures, operating focalized proteolysis. Their formation is a dynamic process requiring the combined and synergistic activity of ECM-modifying proteins with cellular receptors, and the interplay with factors from the tumor microenvironment (TME). Significant advances have been made in understanding how invadopodia are assembled and how they progress in degradative protrusions, as well as their disassembly, and the cooperation between cellular signals and ECM conditions governing invadopodia formation and activity, holding promise to translation into the identification of molecular targets for therapeutic interventions. These findings have revealed the existence of biochemical and mechanical interactions not only between the actin cores of invadopodia and specific intracellular structures, including the cell nucleus, the microtubular network, and vesicular trafficking players, but also with elements of the TME, such as stromal cells, ECM components, mechanical forces, and metabolic conditions. These interactions reflect the complexity and intricate regulation of invadopodia and suggest that many aspects of their formation and function remain to be determined. In this review, we will provide a brief description of invadopodia and tackle the most recent findings on their regulation by cellular signaling as well as by inputs from the TME. The identification and interplay between these inputs will offer a deeper mechanistic understanding of cell invasion during the metastatic process and will help the development of more effective therapeutic strategies
Retrofit of RC bridge half-joints: Applications and remarks with emphasis on post-tension techniques
The Italian guidelines on risk classification and management of bridges: Applications and remarks on large scale risk assessments
Bridges are essential for guaranteeing the functioning of transportation systems since their failure can cause serious threats to the safety, well-being and economy of modern communities, especially in emergency conditions. Following recent bridge failures, among which include the Morandi bridge in 2018, specific guidelines on risk classification and management, safety assessment and monitoring of existing bridges have been issued in Italy by the Minister of Infrastructure as a mandatory code. They pay particular attention to the evaluation of the residual life span of critical transportation infrastructure dating back to the 1950s and 1960s of the last century. Being a newly issued tool, the Guidelines need to be applied and tested in order to find possible drawbacks and to point out the main factors influencing their results. Therefore, in this study, after a short description of the Italian Guidelines, pointing out some differences with other approaches adopted worldwide, some advantages and disadvantages are discussed by an application to a bridge stock located in the Basilicata region (Italy). Data needed to apply the Guidelines are gathered by a purposely set up procedure that exploits existing databases on road infrastructure (OpenStreetMap) complemented by additional data retrieved by means of public image repositories (Google Street View). By accounting for the qualitative nature of the risk classification results obtained by applying the lower analysis levels of the Guidelines, a prioritization method is proposed for ranking bridges for higher assessment levels and possible interventions, as well as consequent funds allocation. The application shows that the Guidelines’ approach tends to provide conservative results. In fact, even in case of bridges with low degradation levels, the final risk classification induces actions undertaken for preliminary or detailed assessment; thus, normal operation (with periodic inspections) would not be possible anymore
Natural compounds for pediatric cancer treatment
There is a tremendous need in clinics to impair cancer progression through noninvasive therapeutic approaches. The use of natural compounds to achieve this is of importance to improve the quality of life of young patients during their treatments. This review will address the "status of the art" related to the potential of natural compounds that are undergoing investigation in combination with standard therapeutic protocols in preclinical and clinical studies and their importance for pediatric cancer treatment. The early studies of drug discovery of these natural compounds discussed here include the main targets, the cellular signaling pathways involved, and the potential modes of action. We also focus on some promising natural compounds that have shown excellent results in vitro and in vivo: Chebulagic acid, Apigenin, Norcantharidin, Saffron/Crocin, Parthenolide, Longikaurin E, Lupeol, Spongistatin 1, and Deoxy-variolin B. Additionally, we introduce the effects of several compounds from nutraceutical and functional foods, to underline their potential use as adjuvant therapies to improve therapeutic benefits. For this purpose, we have selected several compounds: Agaritine, Ganoderma and GL6 peptide, Diallyl trisulfide and Ajoene from garlic, Epigallocatechin gallate from green tea, Curcumin, Resveratrol, and Quercetin
<b><i>Topoisomerase 1</i></b> Promoter Variants and Benefit from Irinotecan in Metastatic Colorectal Cancer Patients
Objective: Topoisomerase 1 (topo-1) is an important target for the treatment of metastatic colorectal cancer (CRC). The aim of the present study was to evaluate the correlation between topo-1 single-nucleotide polymorphisms (SNPs) and clinical outcome in metastatic CRC (mCRC) patients.
Methods: With the use of specific software (PROMO 3.0), we performed an in silico analysis of topo-1 promoter SNPs; the rs6072249 and rs34282819 SNPs were included in the study. DNA was extracted from 105 mCRC patients treated with FOLFIRI ± bevacizumab in the first line. SNP genotyping was performed by real-time PCR. Genotypes were correlated with clinical parameters (objective response rate, progression-free survival, and overall survival).
Results: No single genotype was significantly associated with clinical variables. The G allelic variant of rs6072249 topo-1 SNP is responsible for GC factor and X-box-binding protein transcription factor binding. The same allelic variant showed a nonsignificant trend toward a shorter progression-free survival (GG, 7.5 months; other genotypes, 9.3 months; HR 1.823, 95% CI 0.8904-3.734; p = 0.1).
Conclusion: Further analyses are needed to confirm that the topo-1 SNP rs6072249 and transcription factor interaction could be a part of tools to predict clinical outcome in mCRC patients treated with irinotecan-based regimens
- …